
AN ENTERPRISE ARCHITECT’S
GUIDE TO MOBILITY
Best Practices for Enterprise Mobile Development Teams

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF

CONTENTS

 INTRODUCTION / 3

1. AGILE AND LEAN IN MOBILE DEVELOPMENT / 6

2. THE IDEAL MOBILE DEVELOPMENT TEAM / 12

3. DESIGNING FOR MOBILE FORM FACTORS / 19

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT / 27

5. ARTFUL TESTING WITH USER IN MIND / 36

6. MOBILE DATA INTEGRATION OPTIONS / 45

7. MANAGEMENT AND APPLICATION SECURITY / 55

8. MAKING MOBILE ANALYTICS WORK / 60

 SUMMARY / 66

3

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Welcome to the multichannel world.

Odds are, you are reading these words on the
glowing screen of a digital device. If you are like
most readers in the developed world, you spend
55 percent of your waking hours in front of
a screen—or, more likely, several screens. The
average information worker has three or more
devices at hand, juggling business and personal
communications. The makers of those devices
shipped more than 10 billion of them in 2014
alone (roughly three billion more than there are
humans on the planet).

The vast majority of those devices are mobile
phones. In 2015, according to Gartner Group,
sales of tablets will finally overtake those of
PCs in all likelihood, permanently. The digital
experience is now predominately a
mobile experience.

For Enterprise Software
Development Teams, Mobility is
Now Priority One

Enterprise development teams that are just
beginning to confront the mobile app challenge
will face issues that smaller start-up organizations
won’t have. The enterprise team may be staffed,
and have a management structure in place. They
may have mature QA capacity and a process in
place to deploy software through an experienced
and organized IT Operations team. But mobile
app development and deployment may present
challenges for which neither the developers nor
the operations staff will be truly prepared.

Desktop or web application developers who
have adopted agile development methodologies
may feel they have a good feel for rapid iteration
and delivery. But mobile operating systems and
apps are evolving much more rapidly than web
technologies. Developers are likely to find that
mobile is a very different discipline from
web development.

INTRODUCTION

INTRODUCTION

4

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Thousands of Form Factors

An even greater challenge is the diversity of
the end-user environments. When enterprise
applications were exclusively browser-based
and consumed via PCs, it was practical for an IT
organization to limit the number of supported
browsers and hardware configurations.

When an organization embraces mobility,
those form factor constraints generally
disappear. Users are commonly allowed to
use their own personal devices, instead of or
alongside enterprise-owned devices. With at least
three major mobile operating systems, the mobile
app developers must create user experiences
that will satisfy end users of hundreds of
different devices.

And user satisfaction takes on a new dimension
in a mobile world. Enterprise web developers
often saw it as sufficient to create functional but
pedestrian applications for business users. A
different standard has taken hold among mobile
developers; the current generation of mobile
users expect a UX comparable to that which
they get in consumer-oriented apps they
download from the Apple or Android app stores.
That kind of commitment to UX design will be
new to many enterprise developers.

INTRODUCTION

5

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

INTRODUCTION

An Enterprise Architect’s Guide to Mobility
is designed to provide a roadmap for enterprise
development teams taking their first steps
toward developing and implementing a mobility
strategy—or for development managers
re-evaluating their mobile commitments and
looking for ways to be more effective.

Telerik®: a Progress Company, a pioneering
provider of tools and technologies to address
the entire application development lifecycle,
has gathered in this eBook a compendium of
insight and expert guidance for the enterprise
development leader on:

• Agile and Lean development
approaches for mobile

• The ideal way to organize a mobile team
• Design for multiple mobile form factors
• Basic principles of mobile development (as

distinct from desktop or web development)
• QA/Testing for mobile apps
• Mobile data integration
• Management and app security
• Mobile analytics

Our hope is to make it easier for enterprise
teams to smoothly transition from web to mobile
development by sharing some of the most
important experiences and best practices that
Telerik has collected in creating tools for this
evolution. This is just one more tool to support
the mission Telerik has had since its founding
in 2002: to enable the developer community to
create one-of-a-kind app experiences for
their customers.

1.
An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

AGILE AND LEAN IN MOBILE
DEVELOPMENT

Flexibility

Comfort for
command/control

managers

Control
of process

Speed
Traditional

(“Waterfall”)

Agile

Ability to
embrace

rapid change

7

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

1. AGILE AND LEAN IN MOBILE DEVELOPMENT

Since the 1970s, enterprise software developers
have been debating the merits of traditional,
“Waterfall” development methodology versus
incremental, iterative development methods
now collectively known as “agile software
development.” These are virtually polar opposite
philosophies. The Waterfall approach treats
development as a strict sequential process,
from the application’s conception, through end-
to-end design, to implementation, verification
and maintenance. Agile methodologies divide
the development process into a series of
iterations in which the application is designed,
built and verified by the business owner in
small increments, each functionally complete,
and gradually accumulating the required
functionalities of the finished application.

Developers of desktop or web applications may
continue this debate for years to come. But
mobile development is another story. Mobile is
in an early stage of its life cycle and is evolving
rapidly. Mobile, by its nature, belongs to the
agile developers.

Embracing Uncertainty

An enterprise establishing its mobility strategy is
moving into an unknown territory, where software
development practices are immature compared
to the desktop or web development world. So
it makes sense to adopt a set of principles that
embraces uncertainty, as opposed to trying to
drive all the uncertainty out of the process
up front.

Uncertainty arises for a variety of reasons in
mobile, but mostly because so much of the
environment into which mobile apps are launched
is outside the control of the enterprise and its
development team.

Many enterprises now building mobile
development capabilities also are in the process
of embracing the Bring Your Own Device
(BYOD) trend, in which employees are allowed
to use their personal mobile devices to run
corporate applications and access corporate data.

AGILE AND LEAN IN
MOBILE DEVELOPMENT

THE COMPLEXITY OF
BUILDING FOR MOBILE

1
$

8

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Thousands of Variants

With that, the enterprise accepts responsibility for
supporting hundreds of distinct devices running
at least two different operating systems (Apple’s
iOS, Google’s Android and possibly Microsoft’s
Mobile Windows OS as well). With all the form
factors that must be considered for these
devices, the app developer may need to allow for
thousands of new platform variants.

Also important are operating system
dependencies that are unfamiliar and that change
rapidly. At any point in the development cycle,
the team could get an iOS update from Apple.
The team may know in advance that it’s coming,
but it still sidetracks the iOS version of a new app,
and the team must scramble to deal with that at
the eleventh hour.

Those things don’t happen regularly,
but at mobile’s current state of maturity,
it is a more common occurrence than in
desktop development.

1. AGILE AND LEAN IN MOBILE DEVELOPMENT

9

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

A Different Paradigm

Imagine your team is tasked with “mobilizing” an
old line of business system that you’ve had on the
desktop for 15 years. It’s not as simple as saying,
“Let’s take this order or PO screen and display it
on an iPad.” The screen in the desktop app may
have 75 fields; it simply will not work to pull all of
that information into one giant scrolling
mobile form.

Mobile is not just a new device platform;
it’s a different paradigm.

You don’t know what your end users are going
to want at the outset. So you iteratively develop
a prototype and put it in front of the customers
very quickly, so they can play with it and
comment on it. Only do then you start building…
a little at a time.

That, in a nutshell, is agile development.

The term “agile” means a number of things.
Spelled with a lower case “a,” agile is set of
principles: Planning only what is necessary
for each iteration; not speculating on design;
encouraging tight feedback loops over the life
cycle of the project. Capital “A” Agile is a set of
institutionalized processes. There are several
documented variants, the best known of which
are Scrum or Lean Software Development.

Agile methodologies promote the ideals of rapid
adaptation, evolutionary development, rapid
delivery, continuous improvement and flexibility
in the face of change. These are essential
qualities in a mobile development team.

Agile teams meet frequently—there are daily
stand-up meetings, and each “sprint” (typically a
two-week design and development cycle focused
on a subset of the application) will culminate in a
review session involving the product owner from
the business side.

In general, the team gets better at measuring its
progress and delivering value. Based on what the
team estimates in advance and what it actually
delivers over several sprints, they come to know
their velocity.

It requires commitment to all of the practices,
including the retrospective, in which the team
looks back after two weeks and asks, “What
did we not do well? Why were we off on our
estimates of this task? Why did we miss half of
what we had in our backlog for this sprint?”

1. AGILE AND LEAN IN MOBILE DEVELOPMENT

10

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Lean Software Development

The Lean methodology grew out of the
pioneering production system at Toyota, and was
gradually applied to software development in the
early 2000s. Lean is another way of aggressively
minimizing waste, having tight feedback loops
and other principles of agile development. But
Lean is not as prescriptive in terms of what the
developer needs to do to be successful as are
some of the more formal Agile methods.

A Lean development team typically will evolve
something akin to a product management
function, with Project Managers and User
Experience designers responsible for talking to
customers, building out plans and roadmaps,
building prototypes and iterating over prototypes
with engineering and with customers.

Adopting Lean means engaging customers
as early and often as possible, and shipping
software as often as possible. Part of engaging
customers is showing them prototypes—rough
ideas of what the team is doing. It means defining
Minimum Viable Products—shipping software
the customer can use, even if the products of
each iteration are not visible to everyone.

1. AGILE AND LEAN IN MOBILE DEVELOPMENT

11

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

How Much Involvement
from the Business?

In formal Scrum, sprints run two weeks. So, a
common question is: in an enterprise setting, is it
practical to ask for involvement from the business
every two weeks?

The business doesn’t have to be willing to
commit everybody at the end of each iteration,
but it should be willing to commit one person.
That individual—in agile parlance, the Product
Owner—has the proxy for the business in
evaluating successive releases against the
requirements defined by the business.

Agile development methods succeed in
executing the enterprise mobility strategy when
the developers and their counterparts on
the business side recognize that they are in
this together. They have common objectives,
and they share the challenge of embracing the
uncertainties of mobile development as partners.

1. AGILE AND LEAN IN MOBILE DEVELOPMENT

2.
J

10
<GO>KA

A

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

2. THE IDEAL MOBILE DEVELOPMENT TEAM

THE IDEAL MOBILE
DEVELOPMENT TEAM

Yesterday Today

13

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

An enterprise that is establishing a mobile
development team may transition experienced
developers from its existing team, or bring on
new engineers with mobile-specific backgrounds.
Either way, the mobility team will have to be
organized for flexibility, familiarity with the
mobile paradigm and close collaboration with the
Product Owner from the business side.

Who Should Be on the Enterprise
Mobile Team?

In transitioning developers to the mobility team,
focus on current web developers, as opposed to
the desktop team. The web developers will have
built up their skills through .NET or Java or PHP
or Ruby On Rails. The common denominator is
that they were modernizing legacy systems
via the web.

The team is likely, at least for a time, to adopt
hybrid development—an approach that
combines conventional web skills with
mobile development.
More on hybrid development in Chapter 4.

Hybrid development makes sense from a
technical perspective when “mobilizing”
applications originally developed for the web,
especially as the finished app is likely to retain
the web interface for users who need to access
the back end data and application services
through a browser. Hybrid also is an effective way
for developers transitioning from the web team to
keep one foot in their comfort zone.

In most enterprises, projects are led by the
project manager/team lead. Sometimes that will
be the senior developer, although development
experience is not always effective preparation for
leadership. It may be that the best team leads
will not be senior developers, but rather a career
manager whose real strength is in bridging the
communication gap between engineering and the
end users who are defining requirements around
the strategic needs of the business.

THE IDEAL MOBILE
DEVELOPMENT TEAM

2. THE IDEAL MOBILE DEVELOPMENT TEAM

<GO> <GO> <GO>

Development
manager

UX
designer

Product
manager

Mobile
architect

Enterprise
architect

Developer DeveloperDeveloper
QA QA

14

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

How Centralized/Decentralized
Should It Be?

Many enterprise technical organizations have
shared services supporting the project teams.
There is a benefit in consistency within an
enterprise. That is why enterprises have internal
style guides for written communications, and why
corporate development teams insist on using
common code components and support only a
limited set of tools.

This does not necessarily imply a centralized
app development team. At Telerik, all of the UX
designers report to one manager, separate from
engineering, to promote consistency of UX across
all platforms.

Centralizing development gives IT a degree of
control over the product roadmap and strategy,
freeing the team from the need to support
multiple vendors’ offerings that may not be
compatible and could lead to poor coding
choices. This sort of control is important in
desktop or web development; it is essential in
mobile development, given the accelerated
pace of change.

One aspect of mobile that makes a degree of
centralization attractive is the fact that mobile
apps tend to be built from smaller software
components designed to manage specific
functions and services—fetching data from a
specific database, for example.

There is a benefit in reusing these components
across a wide range of apps and projects,
suggesting there could be value in assigning
a shared services team to own and maintain a
library of these basic building blocks.

2. THE IDEAL MOBILE DEVELOPMENT TEAM

15

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Build or Buy?

An enterprise may have a development team that
actually builds these components, and shares
them via a code repository for other development
teams to use. But there also are opportunities
to populate that repository with widgets from
commercial vendors, or for that matter from
the open source world if the CIO is comfortable
sourcing that way. If apps need a common
calendar widget, the project team can specify the
back-end data but does not have to build the
widget itself.

On the other hand, you want to avoid centrally
controlling resources so tightly that teams can’t
get what they need when they need UX help. If
you have five designers and 25 products, people
will be fighting scarce resources. Some of this
depends on how federated or centralized the
organization’s own business model is.

If the enterprise tends to maintain all of its
legacy business systems centrally, then there
is benefit in a central team. But if it is more of
a federated organization made up of wholly
owned subsidiaries, there may not be as much
need for centralized control of development or
uniformity of UX, because the business units
have more autonomy. If the business feels overly
constrained, that can be a problem for adoption.

2. THE IDEAL MOBILE DEVELOPMENT TEAM

Efficient
development

High-Value UX

16

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

What is the Role of UX?

An engineering background doesn’t always
prepare the developer to see the innate value of
User Experience (UX). As we will see in Chapter
4, end users of mobile apps have much higher
expectations for the quality of the UX than was
typical in the enterprise desktop or mobile world.

Many developers—especially in enterprises—
are accustomed to developing “battleship gray”
desktop and web applications. But when you
have a manager who understands the value
both of efficient development and a high-value
UX, it is more likely that the process will allow
UX to influence design, encouraging iteration
and collaboration between back-end developers
and UX designers. A great developer might not
have the same appreciation for the business
issue being addressed by the app, and might be
more concerned with the development schedule
and with the performance of the code, with less
regard for what is coded is on the roadmap, or
how it got there.

Optimally, product management and UX live
outside of engineering and can take a very UX-
first approach. The ideal approach is to look at
the customer problem that the business is trying
to solve and design for that. When you start with
the feature in mind, you’re solving an unstated
problem. You may even be solving a problem
that the business doesn’t have. Development
teams that focus on the problem as the customer
sees it are likely to waste much less time and
resources iterating over things that don’t need to
be developed.

2. THE IDEAL MOBILE DEVELOPMENT TEAM

17

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Still, even in mobile, you want your sales force
automation app to have a similar UX to your
HR app, because you have the same people
using both. There is a cost to the user having
to use multiple apps if there is cognitive friction
between how you execute a very simple function
in one versus the other. But if apps are developed
from a common enterprise toolbox of functional
components, they are likely to inherit consistency.

UX oversight is not just a question of design, but
also oversight of functional implementation—of
how that function is coded and what components
are used. The ideal is to establish a “design
umbrella”—a team whose skills include those of a
front-end web designer, an interaction designer,
a usability designer and an information architect.
Sometimes one person will contribute several of
those skills.

What’s the Role of QA/What
Should Their Background Be?

It is increasingly common to include QA in the
skill set of the project team. QA people may not
be developers themselves, but they do require
some level of development knowledge, and
in many enterprises, developers do have the
responsibility for QA.

The key is not that the QA person has lesser skills
or different training. The key effective QA can
only be achieved by someone who didn’t write
the code being tested. If the code is your own, in
in the back of your mind, you don’t want to break
it. It is important to delegate QA to someone
who is paid to break the code. That involves a
distinct, highly valued skill. The tester has to be
very deliberate about finding errors that users will
discover by accident. That is not an easy thing to
do consistently.

2. THE IDEAL MOBILE DEVELOPMENT TEAM

18

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Whose Responsibility Should It Be
to Track Mobile Analytics Data?

Analytics—crash reports, KPIs, dashboards—
are the key metrics for app performance and
integrity. They may be of interest to QA, but
they are really designed to enable developers
to monitor their apps. Other consumers of these
analytics may be team leads, product managers
(if that function exists within the enterprise) and
the service desk supporting the apps.
More on Analytics in Chapter 8.

The Product Manager’s Role In
Enterprise Mobile Teams

Product management isn’t traditionally an
enterprise role, but this is beginning to change
in organizations committing to mobility, as
enterprise mobile apps tend to use many of the
design and UX conventions seen in consumer
apps, and mobility teams increasingly think of
end users as “customers.”

In agile development, there is a designated
product owner who represents the voice of the
customer. This is more critical in mobile than it
has ever been before, because the developers
need to be iterating faster than ever.

It is critical to have an individual responsible
for articulating the customer’s needs—in agile
terminology, the “Single Wringable Neck.” The
product management role more typically is a
developer team lead function—the provider
of the app to the business customer—but the
business may want to maintain this responsibility
and delegate it to the Product Owner.

2. THE IDEAL MOBILE DEVELOPMENT TEAM

3.
An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

3. DESIGNING FOR MOBILE FORM FACTORS

DESIGNING FOR MOBILE
FORM FACTORS

20

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Enterprises that embrace the Bring Your
Own Device (BYOD) trend have accepted the
challenge that most sharply differentiates mobile
development from other disciplines: the diversity
of screen configurations in which an app must
provide a satisfying user experience.

Start with device size and screen orientation.
A mobile app has two orientations—portrait and
landscape, depending on how the user holds the
device. In addition, there are multiple types of
mobile devices with different screen sizes and
resolutions—tablets, phones, phablets and so on.
Because users across an enterprise may adopt
devices of many vendors and models, the
combinations can grow into the thousands.
Samsung alone, across its mobile product line,
has more than 520 screens.

Now, there is a huge push for wearables. Many
things will change when you get to screens small
enough to be practical for wearables—menus
and similar presentation conventions on the
screen, and even the physical characteristics of
the device such as buttons and other physical,
tactile controls—will vary widely among devices.

Differences Start with the OS

Of course, there are significant differences
between the operating systems, in features like
tab strip menus versus sliding “drawer” menus.
The OS will decide for you where such features
will be placed. If you design an app that has the
tab strip at the bottom and run this on Android,
the OS will place the tab strip at the top, because
Android users are accustomed to seeing the tab
strip at the top of the screen.

DESIGNING FOR MOBILE FORM
FACTORS

3. DESIGNING FOR MOBILE FORM FACTORS

21

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

3. DESIGNING FOR MOBILE FORM FACTORS

The enterprise needs to have a good idea of the
range of devices on which an app will run, and
look for appropriate approaches as opposed
to allowing QA to discover issues with certain
devices and configurations retrospectively, as
issues to be corrected later.

Organizations using prebuilt software
components that provide specific functions and
services will find that these widgets are platform-
specific, so they can perform natively and provide
a native iOS, Android or Windows experience.
But in terms of the developer’s experience, the
components are part of a broader framework.

If the project is an Android app, the project
team will need to choose widgets that leverage
Android native script, but once that choice is
made, the framework will enable the developer to
use those components without worrying about
the OS specifics. The framework encapsulates
everything a developer would need to know
about Android in a specific abstraction layer. If
you need a button, you simply specify a button,
and it will apply the Android button.

An Exception for iOS

The framework is a development environment,
which may be local on a desktop computer or
run as a cloud service. One important reason a
team might choose a cloud service is that it is a
PC-oriented enterprise that needs to develop an
iOS app, because iOS apps generally can be built
locally only on a Mac. There are vendors who
provide the framework in the cloud specifically to
enable non-Mac development teams to build iOS
apps, using the vendor’s Mac servers.

ScreenBuider

UXPin

AppPrototyper

22

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

3. DESIGNING FOR MOBILE FORM FACTORS

The iOS instance is exceptional—generally, the
build process is local. However, another phase
where developers are likely to work in the cloud is
in prototyping. Prototyping tools allow the team
to design mock-up screens for development;
tools like Telerik UXPin or AppPrototyper enable
the coder to design for one form factor, and
automatically create design templates for other
form factors. Those tools can be accessed from
the cloud.

The prototyping tools do not actually generate
code, just static images useful during the design
phases. There are tools that can generate actual
code, such as the newly introduced Telerik
ScreenBuilder—a tool that actually enables
drag-and-drop manipulation of code entities, not
just static images. The developer can position
UI components, bind lists to specific data
collections and so on. This process will generate
what is called “scaffolding code,” which may be
thought of as the next generation in prototyping.
(Scaffolding enables automation of a substantial
portion of the development process, but projects
will generally perform additional coding to
complete the app.)

Complying with Apple’s and
Google’s Design Guidelines

As we saw in Chapter 2, developers coming to
mobile from their experiences in desktop or
web development are finding that end-user
expectations have evolved. The new generation
of users expect enterprise mobile apps to offer
the kind of simplicity and ease of use seen in
consumer simple apps such as Uber. To achieve
this, generally, it is sufficient to follow the
guidelines provided by the vendors.

23

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

3. DESIGNING FOR MOBILE FORM FACTORS

Apple, Google and Microsoft publish lengthy,
detailed and highly prescriptive style guides
for their platforms, with conventions for layout
and functionality. Vendors of development
frameworks for these OS environments
document their own standards, as well. It is
useful to know this documentation exists,
particularly for enterprises developing in
NativeScript. But the use of pre-built software
components and development frameworks
makes it largely unnecessary to consult the
guidelines—the tools essentially apply these
standards for the developers.

Leveraging Pre-Built
UI Components

Many mobile UI libraries (such as Telerik Kendo
UI® framework) combine all those design styles
and other conventions needed by developers.

If you build a simple application that has two
tabs on the bottom, reflecting the style for
iOS, it will look like a native app. If you run the
same app on an Android device, the framework
will automatically move the tabs to the top,
in accordance with a different style sheet for
Android. The product offers this same kind of
abstraction for Windows phones, as well.

Selecting a Mobile
Development Approach

There is an important difference between
building UI for a mobile website and building it
for a mobile app. For a site, it may be feasible
to engineer a single UI that recognizes the
platform—phone or tablet—on which it is
displaying and adjusts itself to that environment.
It practice, it is very difficult to accomplish this
with an app, which has a wider variety of
controls optimized for one environment or the
other. A universal app will have two distinct
UIs and select the appropriate one when it
recognizes the device.

24

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

3. DESIGNING FOR MOBILE FORM FACTORS

The ideal is to build responsive “universal” apps
that adjust their user interface to the device on
which the user is running them—phone-specific
UI for a given phone, tablet UI for a tablet, with
effortless adjustment for the orientation of the
screen and instant recognition of the OEM
customizations that a device manufacturer may
have made for the specific model and OS.

A range of approaches can be supported using
available frameworks. The choice depends on
the app scenario. Each provides UI components,
as well as design templates, application building
blocks, image editing capabilities, and integration
with backend services.

• Mobile web is the least expensive approach
and has the best reach (covers the widest
range of devices), but might not fit scenarios
in which you need to use specific device
capabilities or do advanced transitions.

• HTML5 is the preferred approach for
responsive apps, but performance is limited by
the capacity of the devices (although this is
improving continuously).

• Native is an expensive approach, but skilled
native code can sharply enhance performance
in a specific OS. Native will require the
enterprise to find programmers with native
skills (or outsource native coding to vendors
who specialize in it) and maintain multiple
code bases. It is appropriate for the most
polished apps, especially those that will be
used by consumers and whose UX will reflect
on the image of the enterprise.

• Hybrid, a web app wrapped in a native
container, offers both ease of development
and a native-like look and feel, as well as the
ability to use OEM device capabilities.

Your app
is good to go

25

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

3. DESIGNING FOR MOBILE FORM FACTORS

Testing and Distribution

Testing is one of the most challenging issues in
supporting the many devices and form factors.
Testing for performance and functionality on
multiple form factors is done generally in the
cloud. Vendors like BitBar have established
“device cloud” services that allow the developer
to rent physical devices by the minute, for
testing. They maintain a warehouse of
devices and will send screen shots to illustrate
how an app looks on that specific device, in
different screen orientations.

An enterprise will require an easy way to
distribute apps. MobileIron and Airwatch have
enterprise mobility management (EMM) solutions
that allow you to distribute apps to a specific
segment of your employees.

New functionality in this space includes an easier
way to report bugs and functionality issues from
mobile devices, or from the app. Telerik has a
function for this: if you shake the phone, it takes a
screenshot of the app, and you can write on
the image to describe specific problems. Then
with a simple point and click, the report is sent
to the developers.

How Can Lean Methods Be
Applied to Mobile Development?

The granularity of mobile apps keeps
development simple for enterprises and lends
itself well to agile development. There is less QA
time and easier deployment—updates and new
apps can be obtained remotely, often without the
user’s needing to intervene or request it—and
deployment is more frequent and faster.

BETA

26

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

3. DESIGNING FOR MOBILE FORM FACTORS

Agile development for multiple form factors
leverages the prototyping we described earlier.
You can introduce a range of design ideas to
prospective end users before you write a single
line of code. That allows you to discard the ideas
about which your users are not excited before
they’re even realized as features. This approach
can help enterprise developers become stronger
internal marketers, as well as coders.

What is Necessary for Quick
Iterations to Take Place?

It can be difficult to get buy-in for short iterations
and agile development, because the business
feels it does not have time to appreciate what
you are building in each release. You may have
frequent iterations but not frequent releases—big
splashes in which you sell the new functionality.
It makes sense to iterate code weekly but only
“release” (with significant internal market fanfare)
every three months.

4.
An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT

SEVEN KEY PRINCIPLES OF
MOBILE DEVELOPMENT

28

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT

SEVEN KEY PRINCIPLES OF MOBILE
DEVELOPMENT

A decade ago, desktop development moved
toward Service Oriented Architectures (SOA)
and it became common for applications to rely
on shared services that lived in a central
enterprise hub. The development team might
find five different internal apps that all shared
the need to check inventory, and which, formerly,
were housed in the mainframe. A typical project
would be to modernize those applications by
putting a reusable front end on the shared
service of accessing inventory data, so that any
of those apps could call that service in a uniform
way. There typically was a Shared Services team
that was responsible for exposing this service,
building out the infrastructure and building up
those endpoints, versioning and the like.

Mobile development is similar but abstracted to
a higher degree. Instead of an inventory service,
you have an inventory widget that connects to
that backend data and provides the view that you
need to use, in one mobile app for the sales force
and another app for marketing. Components now
find their way into the UI.

What are the key coding principles/standards the
developers should adhere to?

1. Reuse

As a developer, you have access to a much better
and broader set of tools, both from commercial
vendors and from the open source community.
You have a library of patterns that you can
draw from.

29

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Fundamentally, code is still code. Up to a certain
level of complexity, the mobile developer uses
the same skills and talents that a web or desktop
developer uses. What mobile has taken farther
than the other disciplines is reuse—the practice,
and the tools to polish and leverage the code
to provide distinct functions and services in the
form of reusable components.

2. Volatility

An important example is the volatility of network
access. In an enterprise, the development team
may be close to the data center that houses the
backend data accessed through the app. But the
user may have strong connectivity one moment,
and be in a tunnel the next.

Effective mobile development requires
a defensive approach to maintaining
performance despite network connectivity
that may be intermittent. The ability to use
an app either online or offline is fundamental to
mobile app design, whereas it has not been as
critical in web design.

This addresses a basic user expectation. With a
web application, the user doesn’t assume that
a blank screen is the application’s fault. It could
be a network connectivity or browser issue. By
contrast, a mobile user is much more likely to
blame the app in such situations, because mobile
users are used to apps that handle network
dropouts gracefully.

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT

30

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

3. Fitness for Purpose

There are developers who make the transition
from web to mobile with their code integrity
and UX standards intact, and those who don’t.
On a 3-inch screen, a 7-inch screen or a 9-inch
screen, your app can look good and satisfy the
business requirement in an elegant way—or not.
The difference is not necessarily in the successful
adoption of new coding techniques—it’s in the
developers’ commitment to ask themselves,
“What are you building, and why are you
building it?”

A successful developer will make the UX
transition as well as the coding transition. It’s an
application, like an application on any platform,
but how do you make it light up a mobile screen?

There’s a difference between a consumer-
oriented app—one that is intended to be
distributed to customers through a public app
store—and an app intended for the employees
of an enterprise. A consumer app can do a lot to
increase a company’s visibility and share of mind,
and that can have a direct impact on revenue. But
it’s fair to ask, does the application, which started
on the web as a browser-based tool, really need
to provide a mobile experience? Does that add
to functionality?

You can ask the same question about an
employee app, but the answer is much more likely
to be “yes.” Effective apps are built because the
phone or the tablet adds some native platform
capability that isn’t part of the web platform, or
because mobility itself is of practical value.

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT

31

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Take the example of an insurance application,
which may be built around the heavily advertised
capability of paying the premium on a smart
phone. The practical, differentiating value to
the consumer for such a function is debatable.
However, the additional concept of taking and
transmitting a picture of the damage from an
accident genuinely uses a native mobile feature,
and is a much more obvious example of value
added through mobility.

You use geolocation, or you use fingerprint
identification to authenticate; you use the device’s
camera to get high resolution images. When
you start to think of what a mobile device can
bring to the context of the business problem,
it changes the way you think about the device
itself and the code itself. The objective is not
to duplicate a desktop application on the phone,
learn a new language and replicate the full range
of desktop functionality on one device, let
alone five.

4. Economy of Effort

Enterprise developers have, for years, been
under pressure to do more with less, and have
seen significant reductions in their headcounts.
A decade ago, a large enterprise might have 300
developers assigned to a major e-commerce
project for the web, a project that might have a
multimillion dollar budget. Today, budgets and
staffing are reduced, and a portion of the work
typically is outsourced. Outsourcing adds an
additional layer of complexity to the project and
development discipline. The outsourcer’s staff
engineers are farther removed from the business
objectives than the staff engineers are. They live
or die by the wireframe.

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT

32

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Developers are going to be most productive
when they’re using the skills and frameworks that
they already know, that they’ve already mastered.
The so-called hybrid development approach
hits that sweet spot, because the developers
are working from their existing base in web
application development—HTML, Javascript,
CSS—to develop mobile apps.

Hybrid is the intersection between the use of
regular web skills, development for a website, and
wrapping that code in a native container (via the
Cordova platform). When you do that, you can
install the code natively on mobile devices, so
that the app can access native device features,
such as contacts or geolocation data. Hybrid
is ideal for targeting multiple mobile platforms,
as would be required in a BYOD scenario. It is a
minor compromise; hybrid apps generally don’t
provide the advanced graphics performance that
you can only get from a native mobile app.

5. Data Granularity

One place where mobile developers can draw
inspiration is from the gaming field, where
developers have become highly adept at
downloading updates mid-game, based on
changes on the server, effectively scaling what
needs to work on a low-powered device. Most
enterprise developers seem to forget that these
are ARM-based devices that cannot process
100,000 list items all at once, whereas in a
desktop environment, the user’s machine is very
likely to have a stable network connection and
be capable of processing much larger amounts
of data. In a 4G world, five Gb is an enormous
amount of data to send down to a phone.

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

010010110010100011101110101
1100101010010110010100011101110101

API

33

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

A mobile developer, in short, must code with the
assumption that the network will drop out at
frequent intervals. The app has to deliver data to
the device in smaller increments, to give the user
a good experience.

6. Security Consciousness

Web developers are accustomed to hiding their
APIs behind firewalls. Their only container to the
world is a web browser; they poke through the
firewall behind the DMZ into an application server
and have free rein to do essentially anything
they want to those APIs, because they know the
connection between the servers is secure.

In the mobile environment, however, the APIs are
exposed to the world, and the developer must
be more security conscious. The developer must
programmatically lock down the API, rather than
working with it inside a secure site.

Mobile developers clearly need to be more
security conscious, and must address the
protection of the data that is sent to the device
in anticipation of the network dropping out, how
it is cleared out, whether it is encrypted and so
on. And, the user is not only consuming data, but
entering it. So the app must be able to manage
frequent state changes—network-connected
or not, high or low bandwidth—holding data
entered offline until the network connection is re-
established and then transmitting it, in a fashion
that feels seamless to the user.

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT

34

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

7. Versioning

Another important type of volatility is in
versioning of mobile platforms. In a BYOD
organization, the app store may contain multiple
versions of the app—not just for different
operating systems and device manufacturers,
but sequentially different versions of the app for
each given OS and device generation, since users
typically are on their own in terms of updates.

If you deploy through a public app store like
iTunes, it may take weeks for the new release
to be reviewed and deployed, and once it does
appear, whether and when the users update it
is beyond the control of the developers. Even a
managed deployment can take several days
or a week.

Many enterprises do distribute apps through
the public stores, as a matter of convenience.
If they want to take advantage of more device-
specific or enterprise-specific capabilities—
security policies or management policies—then
enterprises may use enterprise mobility
management (EMM) services, which are cloud-
based. Even then, they may choose to distribute
apps through a public store, but also have their
own private app store.

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT

35

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

UI

UX

What’s the Role of Reusable/
Pre-Built Components, and How
Should Developers Use Them?

Mobile development depends on the use of pre-
built components and widgets. Developers will
share UI and UX components differently from
the way they would share an HTTP call to go get
data. For each component, the development team
has to ask itself, will this be shared across the 300
business apps we are going to build, or between
the website and its complementary app?

The next question is, how do these components
get deployed? A piece of code, like an app, may
be updated frequently, so it has to be pushed
in unison, in each update, to all the apps that
incorporate them.

JQuery is easy to reuse, because it is a definitive
library of actions and UI controls that the
developer uses at will, whereas calling an API that
is dependent on a signature is something that
could change with every release.

Enterprise teams typically have more people who
are effective at writing business logic than those
who know how to write a beautiful UI. Good UI/
UX developers are in short supply. Enterprise
development managers need to confront this
issue early on when forming their mobile teams,
because ineffective user experience design in the
web world is likely to translate into much worse
user experiences on mobile screens.

4. SEVEN KEY PRINCIPLES OF MOBILE DEVELOPMENT

5.
An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

5. ARTFUL TESTING WITH USER IN MIND

ARTFUL TESTING WITH
USER IN MIND

OS

37

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

ARTFUL TESTING WITH USER
IN MIND

What is the most effective approach to mobile
app testing? At this stage, approximately five
years after the advent of mobile as a mainstream
platform for applications, the jury is still out.

In web application development, the principal
challenges have been browser related.
Developers needed to be sure the application
would run in Internet Explorer, Firefox and
Chrome—all of the versions of those browsers
in use—that they would handle AJAX effectively,
and a host of other common browser issues.
Mobile presents us with a new set of concerns,
including:

• Battery life

• Signal: is the user connected to WIFI or not,
and what is the signal strength?

• The hundreds or thousands of devices
accessing the app

Although there are only three major operating
systems for mobile—iOS, Android and
Windows—there is nonetheless huge diversity
in mobile environments. For years, iOS was quite
uniform, but now it is becoming increasingly
fragmented, as Apple rolls out more devices. The
Android user base, with multiple vendors, models
and configurations, is enormously fragmented.

The challenge is principally this: how do you test
against all those devices? With organizations
adopting BYOD, the development team cannot
avoid the need to provide functionality on literally
thousands of different screens.

5. ARTFUL TESTING WITH USER IN MIND

KEY TEST
PARAMETERS
FOR ENTERPRISE

38

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Continuous Integration (CI)—the accelerated
rollout of platforms and applications in an
enterprise—is yet another curveball. It was fairly
straightforward to deploy and implement CI in
the web world, but in mobile, developers need
to build simultaneously in the Microsoft and
Mac environments; your shop may be building
Android apps in Visual Studio and Eclipse on PC,
while building iOS apps on the Mac, meanwhile
racing to keep the functionality in sync.

What Are the Key Test Parameters
for the Enterprise?

The three principal areas of concern for mobile
apps are:

• Functional: Does the app access the data,
execute the functions and provide the User
Experience required by the business? You
want to eliminate functional defects on
all platforms.

• Performance: Is the app fast and
responsive, and does it complete every
transaction, on all devices?

• Load: Can the app handle enough traffic to
meet business requirements?

The rationale for functional testing is
straightforward. What has changed in the
transition from web to mobile is chiefly the
diversity of devices and form factors on which the
functionality must be assessed
see Chapter 3

5. ARTFUL TESTING WITH USER IN MIND

39

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Power

There are additional native attributes of mobile
devices that affect app functionality. A good
example is power; mobile devices almost
invariably run on batteries. Developers build
in features to control the way the application
behaves as the battery runs down. This is not
simply a question of performance. Typically, the
processor onboard the device will scale down to
conserve battery as it approaches a critical point,
and that can affect app behavior as onboard
services become unavailable to it.

Battery life is handled by the OS, but there may
be OEM customizations on certain devices; QA
cannot assume all Android devices will handle
battery degradation in the same way.

Performance and “Load”

Performance testing is critical, as performance
lags can get in the way of adoption. Performance
also can be affected by conflicts with other
applications that are running concurrently
(especially on Android devices).

Load testing involves creating scenarios driving
usually “headless” traffic (traffic generated
outside the web browser or the mobile UI) to the
app. You may have an application that consists
of a mobile app on Android, a mobile app on iOS
and a web-based application all accessing the
same enterprise data.

Analytics may tell you that 50 percent of the
traffic is coming through on the web and 25
percent on each of the mobile OS apps. People
are browsing through products, logging into
their accounts; perhaps 2 percent of the users
are filling out an RMA form. Scenarios like these
capture traffic patterns.

5. ARTFUL TESTING WITH USER IN MIND

40

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

The testing protocol is to construct such
scenarios and assign virtual users to them. In one
scenario, perhaps 10 percent of the iOS users
are browsing the product pages. So, the test will
designate 10 percent of the 1,000 virtual users
allocated to the test for that process.

The test will do the same for the different
scenarios and different platforms. You’re testing
how the app behaves under different loads, and
whether there is a breaking point.

There are multiple reasons for this kind of testing.
One application owner may say, “We’re running
a Super Bowl ad and we need to know whether
we can handle a million users on the site.” Or
the developer may be creating an application
and needs to know whether it will scale to some
specific volume of users.

What Can Enterprises Do to
Simplify Cross-Platform Testing?

It is impractical for an enterprise QA team to
maintain a closet full of mobile devices for testing,
given the diversity of devices and the rapid pace
of technical evolution. The business case for
outsourcing mobile testing is very compelling.

A powerful, recently developed option is the
device cloud—a service allowing developers to
test their apps on hundreds of actual physical
devices via the cloud. The cloud provider
takes the burden of owning and maintaining
the devices, constantly updating them and
maintaining that huge overhead, entirely off the
developer. The vendor maintains this inventory,
and rents the devices to development shops—by
the minute or hour—for test purposes.

5. ARTFUL TESTING WITH USER IN MIND

41

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Maintaining a device cloud requires a complex
infrastructure. There are security issues
to address, not all of them related to data
transmission. For example, is the test data from
one user completely wiped from the device after
the test is completed, before another user rents
that device?

For organizations with very sensitive data or
requirements for highly specialized devices, it
could be worth the overhead expense and effort
to set up an on-premises device cloud inside the
firewall and run by the enterprise IT department.
However, such an infrastructure is difficult
and expensive to maintain for an organization
committed to BYOD.

It may be feasible to focus on a core set of
devices. Analytics can provide insight as to what
devices users are bringing to work. The core set
may be 30 different iOS and 20 Android devices.
Devices beyond that set—the outliers—may
be used in the enterprise rarely or sporadically,
and it may make sense to outsource testing for
just those devices to a device cloud maintained
outside the firewall.

Test Scripting and Automation

In an ideal world, testing is broken down into
logical components, much like the code itself.
You are not conducting a single test across
multiple platforms. The test script describes a
series of functions—login to the application and
execute a series of actions—without specifying
the OS or the device. Then OS-specific details
are added to the test script, but the scripting
separates the find logic from the actual test
logic, for easier maintenance.

5. ARTFUL TESTING WITH USER IN MIND

KEY SKILLS
OF AN ENTERPRISE
MOBILE APP TESTER

Background
in testing

Solid
understanding of
the application

42

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Test automation is becoming increasingly
popular but it is still in its infancy. There is no
established leader in QA automation for mobile.
It is difficult to say how much mobile app testing
is automated but it’s significantly lower than web
application testing.

What Skills Do Enterprise Mobile
App Testers Need?

Mobile app development teams tend to be
smaller than web development teams, and
frequently the developers themselves are
responsible for testing. Many enterprises are just
beginning to move some of their QA resources
over from web development to mobile. They’re
just discovering what pieces of the apps can be
tested through test automation, and what pieces
still require manual testing.

First and foremost, a tester should have a solid
understanding of the application. That has a
lot to do with the tooling that is being used.
If the app is heavily dependent on JavaScript,
then JavaScript knowledge is a requirement for
the tester. The other obvious requirement is a
background in testing.

Testers often see QA as a path to a career in
development. But this is not realistic for everyone,
and there is an alternative path to career
advancement within the QA discipline.
For many people, a realistic goal is not to
transition into coding but to mature into a first-
rate QA engineer.

Collaboration Between QA And
Development Is Critical

The team may be made up entirely of developers,
in which case one or two of the developers are
dedicated to testing, or at least to writing the
automated test scripts. A lot of the automated
test solutions are code-centric—they actually
require some coding.

5. ARTFUL TESTING WITH USER IN MIND

BEST
PRACTICES
IN MOBILE
APP
TESTING

43

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Alternatively, you may have teams that include
non-technical testers—typically individuals who
came up through the support function in the
enterprise and whose career path has taken them
through QA. Some of them are quite proficient
with test automation tools, but there are always
edge-case scenarios in which you have to get a
developer involved to write some test automation
code. At this point, however, the involvement of
non-developer QA people is still more common in
web application development than in mobile.

Collaboration is essential—once the automated
test is created, it is important that the non-
technical tester be able to take that test and
run with it, without continually burdening the
developers to build new test scripts.

QA has an essential role in Agile and Lean
development organizations. It is important that
testers be embraced as part of the team for each
project, and have roles in each sprint. There
should be user stories for the test cases, and for
the purpose of Scrum, this should be treated like
any piece of development.

Best Practices in Mobile
App Testing

General principles emerging in the mobile QA
discipline include the following:

1. Know when to automate and when not to:
In edge-case scenarios that are difficult
to script, manual testing often is more
efficient that investing a lot of time in coding
automated test solutions

2. Know the devices for which the app is being
developed, and the analytics for those
devices, as well as all the form factors for
those devices

5. ARTFUL TESTING WITH USER IN MIND

CONTINUOUS
INTEGRATION

44

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

It is a challenge to implement CI in mobile.
But more and more solutions are available to
support this. As an additional best practice for CI
shops, enterprises looking for a testing solution
should be certain that it can be incorporated with
their build server (Jenkins, TFS, Bamboo), so that
they can build, deploy and automate test cases.
CI challenges are not unique to mobile, but the
problem of building and provisioning
to 300 devices on two or three operating
systems is unprecedented.

5. ARTFUL TESTING WITH USER IN MIND

6.
An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

6. MOBILE DATA INTEGRATION OPTIONS

MOBILE DATA
INTEGRATION OPTIONS

46

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

6. MOBILE DATA INTEGRATION OPTIONS

MOBILE DATA INTEGRATION
OPTIONS

A mobile app does not exist independently
of the backend data. There is a local UI, and it
conventionally connects with the backend data
repository through a middle layer. An enterprise
is committed to a set of existing backend
systems—Oracle, SQL Server and the like. The
challenge is to construct the middle layer so
that it consumes the backend data and exposes
it through an API, enabling it to be used by the
mobile app.

Enterprises typically have limited resources
for middle-layer development. Options such
as Backend as a Service (BaaS) enable the
enterprise to identify the backend data and
the API to be exposed (or services that can be
exposed) to the mobile application, without
writing code. In other words, the enterprise team
can move from implementing and supporting the
data connection to simply configuring it.

Data Transmission Approaches

A challenge in mobile connectivity is that
backend systems must handle requests from
thousands (sometimes millions) of mobile users,
all connecting to the data, not continuously but
in short bursts. The method of connecting could
be Simple Object Access Protocol (SOAP), the
conventional protocol used in web applications,
but there are drawbacks for mobile. SOAP is
based on XML, and thus is appropriate for
transmitting large amounts of data. But large
transmissions consume memory and may drain
the batteries of mobile devices quickly.

HTTP

HTTP

REST

47

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

6. MOBILE DATA INTEGRATION OPTIONS

Conveying data in smaller increments makes
more sense for many mobile scenarios, and the
alternative protocol, JavaScript Object Notation
(JSON), is likely to be more efficient. Some apps
are designed to use both, converting existing
data interchange to JSON on the fly.

In recent years, web development teams in
pursuit of simplicity and faster data transmission
have adopted RESTful approaches—connectivity
that takes advantage of Representational State
Transfer (REST), a lightweight architecture in
which all data posting and editing operations
are handled via HTTP calls. Mobile development
objectives are similar—rapid, simple, reliable data
interchange—so it will come as no surprise that
REST is standard in mobile development.

Discontinuous Connection

Connectivity between a mobile device and the
Internet is not constant. Consequently, any mobile
app developer needs to consider the options for
storing data, at least temporarily, on the device.
The user wants to continue using the app for
some operations, regardless of whether he is
connected to the Internet. At a minimum, the
app needs to present the user with an interface
indicating that some operations are not available
until he is reconnected to the network, while still
providing basic functionality.

This requires offline storage on the device, and
automatic syncing of the information between
the device and the backend data repository in
the cloud.

48

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

6. MOBILE DATA INTEGRATION OPTIONS

Among vendors of mobile application
development solutions, data synchronization
is one of the biggest aspects of the “story,”
especially for enterprise customers. Even for a
consumer-oriented app, the loss of functionality
when offline is a serious concern if it degrades
the experience for the user, because it can reduce
the user’s satisfaction with the app and reflect
badly on the brand sponsoring it.

But for enterprise app development, effective
synchronization is even more critical, as users will
be depending on the app to provide access to
enterprise data for vital business processes.

Developers are only beginning to see maturing
approaches to data synchronization—
there is no easy way to do it today. Loss of
network connectivity is only one of the issues;
synchronization can be affected by conflicts
between multiple users and multiple apps
accessing the same data store.

Deep expertise and effective tools for
synchronization will be one of the most
differentiating attributes of competing vendors
of mobile app development platforms and
services for years to come. And for enterprise
development teams considering the in-house
coding of their own connectivity solutions, this
will be one of the most daunting challenges.

Flexibility in Synchronization

Whether you are connecting the app to a SQL
server, an Oracle server or to Salesforce, it
doesn’t really matter. The important architectural
principle is to design your synchronization
functions at a level of abstraction so that they
treat all of those backend data stores the
same way.

49

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

mBaaS

3

6. MOBILE DATA INTEGRATION OPTIONS

This flexibility is critical; if the development
team designed its data connection for a unique,
specific data source, it would have an entirely
new problem when presented with the need to
connect a new app to an entirely different data
source—a very common enterprise scenario.

It’s still conventional to ask enterprise developers
to implement their own services on top of
backend systems, exposing the data to the
specific mobile devices that need to consume
it. A benefit of this approach is developers get
full control of those services; the downside
is that the approach offers limited scalability
within the enterprise—it’s a model for enterprise
development that is only sustainable with a
relatively large and productive development staff.

Captive development might make sense for
certain small- to medium-sized businesses
with limited numbers of applications to build
and maintain. For many enterprises—perhaps
most—it makes more sense to outsource the
connectivity solution—essentially renting the
service from a Mobile Backend as a Service
(mBaaS) vendor, or licensing middleware from
an existing vendor’s library of tools. Either
scenario reduces the in-house engineers’
role to configuration, as opposed to original
development.

5
6 7

8 9 10
11 12 13 14

You’ve got
data

2 134

50

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

6. MOBILE DATA INTEGRATION OPTIONS

Key Considerations In Connecting
to Enterprise Data

Adopting a vendor’s mobile middleware has the
advantage of enabling the engineers to configure
access to multiple enterprise data sources
simultaneously. The commercial middleware
will be optimized for mobile consumption,
incorporating data compression and other
services designed specifically for mobile.

Generally, it is not practical to reuse services
designed for the rest of the enterprise
architecture when moving to mobile. The
payload those legacy services deliver to the
end user is too big for phones or tablets. To
reconfigure those services to deliver data in
smaller increments and adapt to frequent
interruptions in connectivity would not be
worth the effort and expense.

A common technique is paging—chunking of
transmitted data into small increments (pages).
The design is such that, while the repository may
contain a million records, the retrieval protocol is
simply to get the first 50, then the next 50 and so
on. Paging is not new or unique to mobile, but it
is highly practical for the purpose.

An alternative is to store large volumes of data on
the mobile client, allowing the user to work offline,
but this is not practical on all devices, some
of which will be hampered by limited onboard
storage. This approach cannot be implemented
in HTML, because HTML imposes a limit of 10
Mbytes of local storage on the device.

51

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

6. MOBILE DATA INTEGRATION OPTIONS

The vendors have standardized ways to access
data from the popular data stores, and generally
the enterprise development team can feel
confident that a commercial connectivity solution
is efficient and secure. What is not standard,
however, is the approach to drawing data from
multiple data stores, combining these data
streams for a single application consuming the
information. A typical way of accomplishing this
is via data virtualization or data federation, in
which data from multiple sources is combined on
the fly into a single entity that makes sense to
consume using the app.

For example, an enterprise client of Telerik
recently had a list of employees stored in SQL
server, and wanted to be able to determine
in a query who the supervisor was for any
individual—the representation of the company
hierarchy was stored in Active Directory. The goal
was to combine the data from the two sources
into a single entity to be consumed by the device.

This application of data virtualization currently
is a read-only approach. Writing back to the two
data sources is much more challenging, because
the developer has to understand the logic by
which the two sources came together. But
read-only is sufficient for a high percentage
of use cases.

Encrypting Data In Transit

If the data is very sensitive and requires a certain
level of encryption, the enterprise might have
an incentive to develop its own connectivity
solution. Some of the vendors offer encryption
on the device, but encryption is not subject to a
mature standard, and some enterprises may have
security policies for which off-the-shelf tools fall
short—particularly if the requirement is that data
be stored offline on the device in a secure way.

RESPONSIVE
IMAGE
SERVICES

52

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Vendors such asTelerik provide data
synchronization components that encrypt data
by default. Third-party encryption tools, including
open-source tools like Zetetic LLC’s SQLCipher,
also are available to provide encryption as an
add-on service.

Off-the-Shelf Connectors—Pros
and Cons

Off-the-shelf development tools can provide
connectivity to the most broadly adopted data
stores, using middleware optimized for mobile.
This includes not only connectivity for completed
apps, but some vendors can provide connectivity
at the widget level—the component, designed
to manage a very specific service within multiple
apps, comes already set up to talk to multiple
popular data stores, with state-of-the-art
synchronization for mobile.

6. MOBILE DATA INTEGRATION OPTIONS

This includes components that have nothing
to do with the UI—building blocks common to
multiple apps that handle deeply embedded
functions. An example is Responsive Image
Services, in Telerik . This function takes
note of the app user’s device in serving up
images, so that the data store will automatically
resize an image in the server; it won’t send a
10MB image to a small phone that can only
practically display a much smaller image, for
example.

Like any approach in development, the purchase
of off-the-shelf components involves a tradeoff.
This decision will lock the enterprise into a
relationship with a vendor—one that should not
be entered into casually.

If the vendor frequently changes course or
discontinues support for components on
which the enterprise depends, there is risk.
Given the current consolidation trend in the
market for mobile development tools, such risk
must be considered.

SELECTING
THE RIGHT VENDOR

53

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

6. MOBILE DATA INTEGRATION OPTIONS

It makes sense to choose a vendor with a track
record of strong execution and a comprehensive
strategic vision that extends two to five years
into the future. The economics of such a
relationship are compelling, but the partner will
be contributing important components to your
mobile strategy—it’s a high-stakes decision.

The optimal approach may be to partner with
more than one vendor, choosing partners with
complementary strengths. Both Azure and
Amazon are likely to survive in the market for
years to come, and could be effective partners
for a vendor with a better story in offline
synchronization, as an example.

Organizations adopting mobile have had to
accept that data will persist on those devices.
Their approach has been to apply corporate
policies at the device level—always insisting on a
secure passcode for the device. There are policies
regarding the strength of the passcode. And the
policy may be that if the user fails three times to
enter the correct passcode, the system can wipe
the data from the entire device. Such policies can
be administered remotely. If the company has
former employees who’ve used corporate data,
the IT department can wipe specific apps from
the devices of former employees.

Service Levels

Connectivity solutions come in ranges of price
and functionality. At one end is a free option,
available without a license fee, that does not
include the security features—there is no support
for the secure service layer to access data over an
HTTPS connection, but just a straight HTTP-to-
HTTP connection. To use it, you need to pay for
the backend services, where the security will be
in place.

COST
VALUE

54

A PUBLICATION OF CONTENTS

6. MOBILE DATA INTEGRATION OPTIONS

If the app requires connection to Active
Directory—if you want your users to log in with
LDAP—you’ll likely need a high-end service
package. Otherwise, the app will use built-in
security, and users will not be able to log in with
authentication from Active Directory. Also, most
solutions come with the service of cloud data
storage. You may only be able to store data in a
proprietary data store inside your firewall with the
high-end versions of the service.

The Value Equation

The importance of an app to the enterprise may
not be in proportion to the number of people
using it. A consumer app that is used by millions
may have a lower value to the organization than
a business app used by 10 employees. So from
a value perspective, it does not make sense to
price services on the basis of scale, and vendors
generally will provide the same commitment to
performance, regardless of scale.

Telerik requires that if a client’s app receives
more than half a million requests per month,
the data is moved to its own location on Telerik
serve s, where the company can assure optimal
performance, not just of the client’s app but of its
neighbors within the infrastructure.

An Enterprise Architect’s Guide To Mobility Whitepaper

7.
An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

7. MANAGEMENT AND APPLICATION SECURITY

MANAGEMENT AND
APPLICATION SECURITY

56

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

MANAGEMENT AND APPLICATION
SECURITY

Application Management and Device
Management are concepts that can be referred to
collectively as Enterprise Mobility Management.
This term covers all of the important aspects of
mobile security—Mobile Device Management
(MDM), Mobile Application Management (MAM)
and Mobile Content Management (MCM). The
major solution providers have broadened their
offerings to cover three aspects.

Mobile Device Management

MDM enables the enterprise to maintain
an inventory of hardware devices. MDM
differentiates devices by the OS and its
capabilities. The leading vendors maintain very
close relationships with the OS originators, and
typically ship the updated version of MDM
software the same day a new release of the OS is
shipped. It is typical for enterprises to upgrade to
the latest version of iOS in less than two weeks, in
part because they can get support from the MDM
vendor the same day as the OS release.

An important driver is the BYOD trend—which
creates a critical difference between mobile and
desktop support. You don’t have a choice as an
enterprise whether to adopt the latest version of
the OS when it comes out. The users are making
that decision for you. In the desktop world, by
contrast, an employee would rely on a corporate-
owned computer controlled by the policies of
the company, and enterprises might resist OS or
browser upgrades for months after release, or
skip releases entirely.

All MDM platforms are not quite the same. The
standards are not yet clear. But this is largely
irrelevant to the software developer, since MDM
only concerns devices. For MAM, there may be
different approaches to software containerization.
If the software is containerized, the software
developer should have no real concerns. They
are replacing unsecured code with a wrapper of
secure code. If your application code is unsecured
for some reason, the container wraps it in code
that is optimized and secure for mobile.

7. MANAGEMENT AND APPLICATION SECURITY

<GO>

010 101
0111 10
10 1011

010 101
0111 10
10 1011

010 101
0111 10
10 1011

57

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Mobile Application Management

On the other hand, MAM providers offer specific
Software Development Kits (SDKs)—if the
development team chooses to work with the SDK
for a given project, there will be no container.
What the developer does have is much more
granular control. Using the SDK, he has secure
access to the behind-the-firewall services of the
company, and the app will be designed to store
some data on the device. Using an SDK results
in an application that uses the data and services
within the security policy of the company.

The choices are not mutually exclusive. You
can have both containerization and SDKs. But
you can make the choice depending on the
engineering resources you have in the enterprise.
An enterprise with development depth, creating
applications for its own purposes, will likely prefer
the SDK approach; if you have third parties
developing applications for you, containerization
probably may make more sense.

Airwatch and MobileIron, two leading MAM
vendors, work similarly: when the developer has
completed the building and QA for an app, he
uploads the binary file of the application to a web
portal, and the vendor wraps it. The process is
simple; any administrator can do it.

7. MANAGEMENT AND APPLICATION SECURITY

!

58

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

One of the MAM system’s capabilities is that of
serving as an application store. MAM might
have a range of other management functions
and enforce various policies, such as specifying
that a specific set of applications have specific
properties (for example, they always run under
a particular security protocol, such as DTM).
MAM systems can alert users to the existence
of a new version of an app. Some individual
on the development team should have the
permissions to compile the application and store
it to the repository, and be designated as the one
responsible for doing so.

A typical enterprise can have its own app store. It
provides very good control of distribution to the
end users, so that the application can never leave
the security borders of the company. The Apple
or Google Play stores are secure, but providing an
enterprise store enables the company to specify
its own security policies, and the development
team can easily define the roles within the
business unit and map those to roles defined by
app store. For example, the HR team might only
see the HR applications, or the travel team
might only see the travel expense application.
This is very similar to software distribution
systems that have been used for many years for
desktop applications.

Managing Software Components

Generally, MAM is used for managing complete
apps. As we have seen in earlier chapters,
mobile apps generally are made up of smaller
components of code that handle specific actions
and services, either developed in-house for reuse
in multiple projects, procured from the Open
Source community or licensed from a mobile
development tool vendor. It’s possible to use
the MAM system to manage smaller widgets,
as well, but this is atypical. The sharing of small
components and widgets among developers
usually is much less formal, through some kind
of source control system (such as Visual Studio
or Eclipse).

7. MANAGEMENT AND APPLICATION SECURITY

TELERIK
PLAFORM

010 101
0111 10
10 1011

Airwatch
Mobile

Iron

Citrix

59

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

This code repository should be integrated with
the MAM system. When you’re building your
application, you’ve completed an Minimum
Viable Product, tested it and should be able
to publish the binary files directly to Airwatch.
Airwatch will then wrap the application for
distribution to end users.

Currently, Telerik is integrating the SDKs of
various providers into its platform, so that the
developer can promote the finished application
to the MAM system and then decide whether
to containerize it. We are working with Airwatch
(VMWare) and MobileIron. We will ultimately
integrate with Citrix as well. Airwatch has the
necessary APIs for integration, but MobileIron
does not.

A best practice is to constantly run integration
tests on anything the team has integrated into
its mobile platform through APIs. If the enterprise
has licensed a tool that provides an API, it should
anticipate that the vendor will conduct similar
tests, as well, but should test these connections
continuously. APIs evolve rapidly, especially in the
mobile development world, and they represent a
potentially strategic dependency.

7. MANAGEMENT AND APPLICATION SECURITY

8.
An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

8. MAKING MOBILE ANALYTICS WORK

MAKING MOBILE
ANALYTICS WORK

WHO NEEDS
MOBILE
ANALYTICS?

Support teamsDevelopersProject managers

61

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

8. MAKING MOBILE ANALYTICS WORK

MAKING MOBILE ANALYTICS
WORK

From the moment the development team
releases a new app, that code is in the wild—in
the hands of users, and beyond the control of
the developers. Fortunately, you don’t have to
simply wish it good luck and move on to the next
project. The app takes with it the eyes and ears of
its developers, in the form of analytics built into
the development platform.

Who Needs Mobile Analytics Most
in the Organization?

In the enterprise, the main consumers of analytics
are the product managers and the development
team. The developers are interested in the usage
of the features, but also in seeing whether the
application is performing well—exceptions and
errors are of the greatest interest to development.

Many enterprise developers think about analytics
too late in the development cycle, implementing
analytics after the product has been released,
and thereby losing insights in the hours after
the initial deployment. It also is possible to start
too early with analytics. It’s best to implement
them before field or beta testing. If you do a lot of
refactoring, then you will be changing the metrics
you collect inside the application.

Analytics of the sort that are of interest to
developers rarely, if ever, are exposed to the
end user. It is likely customers would not make
much sense out of the data. However, some
organizations will find it useful to Service Desk
support people with access to certain analytics,
to track performance of apps and mobile devices
against service-level agreements.

1
2

3
4

MOST USED
FEATURES

62

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

8. MAKING MOBILE ANALYTICS WORK

What Kind of Data
Should Be Collected?

Analytics provide feedback on the way users
access the app, and how often they use it. They
can be quite granular in their content, advising
the development team on which features are
being used, how often they’re being used and,
conversely, which features are not used (so the
team can better plan the next development cycle
and make better roadmap decisions).

Analytics also can generate insights into the
users themselves—the screen resolution of their
devices, the operating system and other features
of the environment. They can offer guidance on
which features need to be enhanced, and which
can safely be dropped in future releases. They
can tip you off that it is safe to drop support for a
little-used OS.

Other commonly used, high-value metrics
generated by analytics include:

• Feature-timing: The system can track how
long it took for the application to start up and
show the initial screen, how long it took to
process an image and so on. Analytics collect
this data and send it to the backend servers,
and the developers can see average times
over a given interval on a dashboard designed
for this purpose.

• Screen resolution: Developers know what
screen size users have on their devices, how
much RAM and other environment data.
They know how often each type of device is
used to access the application—whether it’s
an iOS, Android or Windows phone. This can
be very helpful in allocating R&D resources
to optimizing app functionality, UX and
performance on these devices.

GO

63

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

8. MAKING MOBILE ANALYTICS WORK

Analytics can be configured to track common
features of apps across multiple business
functions and technology platforms, as well as
unique and esoteric apps for highly specialized
devices. For example, in the Danish Post Office
Department, package carriers use a mobile bar
code scanner, and the application that runs it has
analytics built-in.

This is an example of a very large enterprise
with a very specific use case, and an application
used only by one class of employees. They track
how long it takes to scan, how was the mobile
connection for that GPS location and so on.
Package carriers don’t give much direct feedback
to the development team—nor, for that matter,
indirect feedback unless something goes wrong
with the scanner—so the analytics fill in the gaps.

What to Track…and What Not to
Track

Analytics require configuration and return large
volumes of data, so it is important to recognize
that not all features, either of the app or the
environment, are worth tracking. The team
should decide beforehand which features
are important to the business and prioritize
tracking of those features. Generally, these are UI
features—which buttons are clicked and which
UI forms are shown to the user, how often a user
printed something and so on. They are business
functions—tangible elements of the User
Experience, not individual widgets.

Analytics can be used to track application usage,
not only by named users, but by anonymous
users as well, by IP address, custom installation
ID or an anonymous ID generated by the system.
This can be accomplished privately, without
collecting or sharing any individually identifiable
user information.

Track a feature

Track a timing event

API< > Start and Stop< >

64

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

8. MAKING MOBILE ANALYTICS WORK

How Frequently Should Analytics
Be Monitored?

Developers access analytics through browser-
based portal, providing access to hosted backend
data. The provider typically will enable users to
subscribe to email alerts when certain exceptions
or errors are encountered, and users can schedule
regular reports at predetermined intervals.

Product Management might only look at the
data once a month to see how new features are
being adopted and how they’re performing, to
make decisions on future UI changes to improve
performance or drive better adoption rates.
Determining which features not to take into a
future release of a product—especially moving
from one platform to another—is one of the most
effective ways to save money on development.

Users typically get a monthly subscription
for analytics, and then embed, through an
API, a simple library into the app. There are
specific libraries for many different platforms—
not only mobile devices but also for the desktop
(Windows and MacOS). The developer enters a
key in the library when she initializes it, and the
tool starts collecting data. For example, to begin
tracking the usage of selected features of the
app, the developer would use an API called
Track Feature.

Choosing features to track, based on their
importance to the business, is something the
team will do manually, so the decisions should
be made in advance. To track a feature, you call
an API; if you want to track a timing event, you
call Start and Stop, and the system will track
that interval.

Regular
analytic data

Sensitive
analytic data

65

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

8. MAKING MOBILE ANALYTICS WORK

The subscription includes all of the available
metrics. It’s based on the number of unique users
you have. Typically an enterprise with fewer than
1,000 unique users can use a free subscription,
but larger enterprises will need to go for the
Professional subscription. Users can access data
read-only, or they can be given rights to make
changes. The account owner can assign users
by name.

How Can One Ensure Security of
Mobile Analytics Data?

It takes time to get development teams to
adopt analytics. Years ago, it wasn’t typical
for developers to version-control their code;
now version control is a standard tool. Without
analytics, you’re coding blind. Things can work
in the development servers, but you don’t know
how they will perform in the customers’ devices
until you release a version and see what happens.
Analytics give you instant feedback about
incidents and problems.

Commercial and Open Source
Analytics Available

The issue is mainly to provide a backend service
to manage the analytic data. At Telerik, we have
multiple servers handling millions of messages
per day; it is a major server installation and quite
a complex solution.

Telerik has a dedicated server farm for analytics
and stores the data there, but some customers
prefer their own servers. An on-premises solution
is an option that will be attractive to enterprises
with apps accessing highly sensitive data. The
tradeoff is the cost of maintaining the server
infrastructure, including backup and restore,
which really should be dedicated to analytics and
not shared with other tenants. The cost of this is
not trivial.

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

SUMMARY

SUMMARY

67

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

SUMMARY

SUMMARY

This eBook has sought to present a coherent
picture of the challenges and opportunities ahead
for an enterprise software engineering team that
is beginning to develop the capacity for mobile
app development.

If your development team has not already fully
embraced agile methodologies, mobile will
almost inevitably push you in that direction. The
rate at which mobile technology is evolving, and
the higher expectations about the quality of
the user experience in mobile apps make agile
methods essentially mandatory. “Agile,” of course,
may mean strict adherence to a set of published
principles, or selective adoption of agile or lean
methods on a “use what works” basis.

A Degree of Centralization

You are likely to find that mobile development
causes you to rethink the way you organize the
engineering function in your enterprise. The
emphasis on reuse of effective code and methods
across multiple projects may make it attractive to
centralize mobile development to a degree you
have not done so in desktop or web development.

Mobile development also is very likely to lead
you toward building from complete, mature code
frameworks and off-the-shelf widgets, either
open source or from vendors who specialize in
such frameworks. Development teams already
committed to service-oriented or software-
defined architectures will have few issues with
this approach.

68

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

SUMMARY

An important driver for centralized development
and the use of standardize frameworks is the
large number of devices and form factors for
which a mobile app must be designed to work.
Organizations embracing BYOD will deploy their
apps to potentially hundreds of device types,
with at least three important operating systems
and thousands of possible configurations. While
a certain amount of coding in native script may
be necessary for an app to provide a satisfying
user experience, building from a comprehensive
framework will simplify the process of creating
“responsive” apps delivering a high-value UX on
multiple platforms.

Seven Key Principles

Once your mobility team and your tooling are in
place, you will find that seven key principles will
apply across most of your mobile projects:

1. Code reuse

2. The need to address the volatility of network
access in your design

3. The importance of understanding the business
problem to be solved by the app, to achieve
Fitness for Purpose

4. Economy of effort, achieved through
the choice of agile methodology, and the
appropriate use of hybrid coding

5. Smaller data granularity along with the
recognition that mobile apps access backend
data in smaller increments than would be
characteristic of a web application

6. Greater security-consciousness (because
APIs in the mobile world are not hidden
behind firewalls), including a default reliance
on data encryption

7. Versioning and the recognition that at any
time the app store serving up your enterprise
apps is likely to contain multiple versions, all of
which must be supported

69

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

SUMMARY

Mobile app testing will bring new challenges,
as you must QA apps for a wide variety of
devices and conditions—very large numbers
of concurrent users, platform fragmentation,
inconsistent network connections, power and so
on. Mobile has led to the evolution of automated,
cloud-based testing approaches that will be new
to many enterprise development teams.

Backend Data Connections

Mobile may cause your engineers to rethink
the way they connect apps to backend data.
Conventional approaches like SOAP that
assume a continuous network connection and
downloading of data in large volumes may
not work in a mobile context. Techniques like
JSON, friendlier for situations where data will
be accessed in smaller chunks, are preferred in
mobile development, as will be the assumption
that a certain amount of data will be stored on
the device, at least temporarily, to enable the app
to function offline.

Application Management and Device
Management are concepts can be referred to
collectively as Enterprise Mobility Management.
The major solution providers have broadened
their offerings to cover these bases. MDM
allows the organization to manage its
hardware inventory; MAM is concerned with
deployment of complete apps, and incorporates
security features. A key concept is software
containerization, in which functional code is
“wrapped” in a code layer that is optimized and
secure for mobile use.

Design

Connect Measure

Test
Build Deploy Manage

70

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

SUMMARY

Support for mobile apps is greatly enhanced by
the incorporation of analytics, which feed back
to the development team continuous streams
of data about which features are being used,
how often they are being used and, conversely,
which features are not used. Analytics also
generate insights into the screen resolution of
users’ devices, the OS and many other features
of the environment. Users typically get a monthly
subscription for analytics, and then embed,
through an API, a simple library into the app.

Clearly, the move to mobile development is an
involved undertaking. We hope that you now
have the beginnings of a roadmap for this
crucial evolution.

71

An Enterprise Architect’s Guide To Mobility Whitepaper A PUBLICATION OF CONTENTS

Our completely integrated platform enables you to manage
the entire application lifecycle from idea and development,
to deployment, to measurement.

Request a demo to learn how Telerik can help
with your mobility strategy.

Learn more about Telerik Platform and our suite
of offerings. Visit us on:

LET TELERIK GUIDE YOU
TOWARDS ENTERPRISE
MOBILITY SUCCESS

Try now

