Editing PDF files in the browser
by adding Signature, Text and Images

Introduction

There are couple of Software words, which are so common, that knowing them does not make you a geek – words like browser, drivers, version, .NET, Java, Media Player and similar.
[image:]One of these words is PDF. In the world of Documents, Communication and Business, it has become such a solid standard, it is not less than astonishing how big of a margin it has achieved. So much so that “send me the file” nowadays can usually be replaced by “send me the PDF”.
We at Telerik follow closely the demands of our users. In many companies, it is the accepted practice to use PDF for communication with files. Usually, these files require alteration along the way, such as adding a Signature, additional Text Data or a Chart Image for descriptive visualization.
And what better way to do that on the fly directly inside your company’s online app, remaining within the comfort of your browser.
In this blog post, we will go through the steps how to achieve that using the Telerik’s PDFViewer for ASP.NET Core and Document Processing libraries. If you prefer to skip directly to the runnable project, feel free to do that by going to the Conclusion section.

The Reach of PDF

Portable Document Format (global open ISO standard since 2008) was first released in 1993 by Adobe with the idea to achieve consistent document display with the exact same content and layout no matter which operating system, device or software application it is viewed on. This is the main advantage of the PDF format - Graphic Integrity. It is useful for presenting text, graphics, and spreadsheets on one page knowing it will look the same no matter where or how you present it.
[image:]Some other advantages of PDF include:
· Recognized and Adopted Worldwide
· Compact Archiving
· Business and Legal Documents
· Convenience
· Accessibility and Compliance
· Offline Functionality
· Workflow Flexibility
· High-end Printing
· Multi-Dimensional
· Digital Signatures
· Generic (Browser) Support

You’ve probably come across some online application web sites where the requirement was for the attached file to be in PDF format. This should come as no surprise, given that there are literally trillions of PDFs around the world due to its popularity.“A recent article on Medium reveals a nugget regarding PDF usage:
"...Adobe reports that in its 2020 fiscal year alone, about 303 billion PDFs were opened using its Document Cloud service, a 17% annual increase...."
As the article rightly points out, PDF "has prevailed" and has "...become the one true standard — the paper of the emerging digital world."
Read "The Inside Story of How the Lowly PDF Played the Longest Game in Tech" on Medium.”
 			 Source: https://www.pdfa.org/pdf-plays-the-longest-game-in-tech/

This can also be clearly seen in the search popularity throughout the years:

[image:]
Figure 1: ‘pdf’ searches for the last 15 years. Data: Google Trends

The curve gets steeper in the recent years for actual editing of the PDF files:

[image:]
Figure 2: 'edit pdf' searches for the last 15 years. Data: Google Trends

One key advantage for the PDF over its competition is the strong Mobile support and application availability. For instance, when you buy a flight ticket, there is a big chance the QR code is provided to you in a PDF format. And you can attend the flight simply by opening the ticket with your smart phone, which spares you the effort of actual physical printing.

[image:]
Figure 3: Device Market Share for the last 10 years. Data: https://gs.statcounter.com/

Key Constructs

We can now proceed with the sample. Our goal is to add elements to existing PDF files directly in the browser web site. To achieve a working online implementation, we will make avail of the following tools:
1. Telerik PDFViewer for ASP.NET Core
2. pdf.js (already embedded in the PDFViewer)
3. Kendo Drawing (coming built-in with the Telerik UI for ASP.NET Core library)
4. Telerik Document Processing (external libraries available within the same Telerik UI for ASP.NET Core Package)

Game Plan

Here is the plan:
1. First, we will implement a standard PDFViewer for Core.
2. Then, we will add our custom buttons for Text, Signature and Image.
3. Next, we will create an overlay div which will be our drawing surface. It will be transparent so we can simulate editing the PDF file visually.
4. Once the user enters editing mode with one of the buttons, he will be able to make his changes and click “Save”.
5. Then we will generate the PDF byte array of this surface and send it to the server as a separate PDF file.
6. Now, the work will be done by the Telerik Document Processing libraries. We will load our original PDF file and merge it with the generated PDF file.
7. And we will pass the resulting single PDF file back to the PDFViewer.

Implementation

1. Creating a Telerik PDFViewer for ASP.NET Core:@(Html.Kendo().PDFViewer()
 .Name("pdfViewer")
 .PdfjsProcessing(pdf => pdf.File(Url.Content("../TelerikSampleDocument.pdf")))
 .Scale(1)
 .Height(1200)
)

2. Adding new buttons for Text, Image and Signature:<script>
 $(document).ready(function () {
 var pdfViewer = $("#pdfViewer").data().kendoPDFViewer;
 addButtons(pdfViewer);
 });

 function addButtons(pdfViewer) {
 var toolBar = pdfViewer.toolbar;

 toolBar.add({
 type: "button",
 //text: "Text",
 attributes: { title: "Text" },
 icon: "edit-tools",
 click: function (e) {
 showOverlay("Text");
 }
 });
 …

The result will look like this:
[image:]

3. Adding invisible overlay on top of the visible PDF page: pdfViewer.one("render", function () {
 pdfViewer.element.find(".k-page").append("<div class='pdfOverlay pageOverlay k-hidden' style='height: 100%;'></div>");
 });

4. Creating a corresponding element depending on the clicked button:
 if (mode == "Text") {
 $(".pageOverlay").append(`<div id="dragContainer">
 <div id='textContainer' contentEditable="true"
 ondblclick="divDblClick(this);" class='dragContent'
 onblur="divBlur(this);" onfocus='divFocus(this);'>
 New Sample Text</div></div>`);
 registerDragging();
 }

5. Sending the generated PDF from the overlay PDF back to the server. This happens after the user clicks on the “Save” button: $("#saveButton").off("click").click(function () {
 // Convert the DOM element to a drawing using kendo.drawing.drawDOM
 kendo.drawing.drawDOM($("#surface"))
 .then(function (group) {
 // Render the result as a pdf document
 return kendo.drawing.exportPDF(group);
 })
 .done(function (data) {
 // Save the pdf document
 refreshPdfViewer(data);
 });
 });

6. It is time for the Document Processing to do its thing and merge 2 PDF files on top of each other:

 private byte[] AppendContent(byte[] resultingBytes, RadFixedDocument document2)
 {
 RadFixedPage foregroundContentOwner = document2.Pages[0];

 MemoryStream ms = new MemoryStream();
 byte[] renderedBytes = null;
 using (MemoryStream stream = new MemoryStream(resultingBytes))
 {
 using (PdfFileSource fileSource = new PdfFileSource(stream))
 {
 using (PdfStreamWriter fileWriter = new PdfStreamWriter(ms, true))
 {
 foreach (PdfPageSource pageSource in fileSource.Pages)
 {
 using (PdfPageStreamWriter pageWriter = fileWriter.BeginPage(pageSource.Size, pageSource.Rotation))
 {
 pageWriter.WriteContent(pageSource);

 using (pageWriter.SaveContentPosition())
 {
 double xCenteringTranslation = (pageSource.Size.Width - foregroundContentOwner.Size.Width) / 2;
 double yCenteringTranslation = (pageSource.Size.Height - foregroundContentOwner.Size.Height) / 2;
 pageWriter.ContentPosition.Translate(xCenteringTranslation, yCenteringTranslation);
 pageWriter.WriteContent(foregroundContentOwner);
 }
 }
 }
 }
 }
 }
 renderedBytes = ms.ToArray();
 return renderedBytes;
 }

7. And the last bit is to refresh the PDFViewer with the new data: finalBytes = AppendContent(resultingBytes, document2);
 PdfResult = finalBytes;
 string result = Convert.ToBase64String(finalBytes);

 return result;

JavaScript part: function refreshPdfViewer(data) {
 $.post("/PdfViewer/PreparePdf", {
 pdfData: data.replace("data:application/pdf;base64,", "")
 },
 function (response) {
 …

These are the crucial contents and the gist of the implementation. There are also other javascript logic and CSS which helps displaying everything neat and tidy, but I will skip them for brevity. The entire code can be found in the next section.

Conclusion

Leveraging Telerik Document Processing library capabilities in combination with a modern UI toolset like Telerik UI for ASP.NET Core provides a solid convenience leap forward, which can make the life of every PDF user so much easier. And the sweet part is that all of this is available as a single Product package:
Telerik UI for ASP.NET Core

I also encourage you to check Telerik’s Full DevTools offering which brings more than 10+ Web and Desktop Development Technologies you can choose for integration:
Telerik DevTools
You have the full sample ready to download and run available here (!TODO: when publishing the blog provide a link with the sample. You can find it attached to the e-mail.). The implementation is currently done for a single page as a Proof-of-Concept, but it can be further enhanced to work with multiple pages. Feel free to check it out and let us know if you have any feedback, ideas for improvement or questions.

Here is a Video demonstrating how the end result looks like (focusing the text happens via double-click):

[image: PDF Viewer Advanced]
image3.png

image4.png

image5.png

image6.png

image7.jpg

image1.png

image2.jpeg

