
USING THE JSDO
WITH KENDO UI

A publication of 2

1: Introduction
Kendo UI is a JavaScript framework that can be used to
build web and mobile apps using HTML5 and JavaScript. It
provides a very powerful set of UI widgets that can be bound
to a data source.

The Progress JavaScript Data Object (JSDO) provides
support for a complex data model and API to manipulate
that data while maintaining data integrity. The JSDO
catalog defines the logical schema and mapping to a
remote data source. The catalog also defines an API to
invoke remote business logic in addition to simple CRUD
operations. The JSDO is designed to work with any Web
/ JavaScript framework. Similarly Kendo UI is designed
to provide the best UI regardless of backend provider.
Naturally the two work great together. This whitepaper
describes how to use the new JSDO dialect of the Kendo
UI DataSource with Kendo UI to access data and business
logic on an OpenEdge AppServer.

Kendo UI widgets use the Kendo UI DataSource to access

local and remote data. The Kendo UI DataSource is an

abstraction on top of both local data (arrays) and remote

data (HTTP endpoints) that makes it much easier to request

data, fill widgets with data, and then make and track changes

to that data. The transport property in the Kendo UI

DataSource configures how to perform the CRUD operations

for the DataSource by defining the corresponding properties:

create, read, update, and destroy. The JSDO dialect of

the Kendo UI DataSoure provides the definition for these

properties.

The OpenEdge backend can be accessed through the

Kendo UI DataSource using the same architecture used for

Mobile in OpenEdge 11.2 and greater, the JSDO. Support for

serverPaging, serverFiltering, serverSorting and batching in

the Kendo UI DataSource requires OpenEdge 11.4 or greater.

ABL

*.JS *.HTML

Mobile Device Web Server

HTTP
(REST/JSON)

Internet

JSDO

Header Data

Detail Data

Other Data

Header Data

Detail Data

Other Data

Business Entity

PO ProDataSet
JSDO-BE
Mapping

Client-side
App resides on device

Server-side
n-tier architecture with

Business Logic and Data

OpenEdge
AppServer

A publication of 3

The JSDO manages the complex communication with
an OpenEdge AppServer. It connects to the OpenEdge
AppServer and executes the ABL code which accesses the
data and executes the business logic. This ABL program
is called a Business Entity. The JSDO only depends on
JavaScript and can be integrated with many JavaScript
frameworks with support for HTTP communication.

To access the OpenEdge AppServer, the CRUD operations
for the Kendo UI DataSource can be configured to call the
corresponding CRUD operations in the JSDO.

This document provides examples and explains how the
JSDO is used with the Kendo UI components.

2: Using the JSDO from a simple HTML page
The following example shows how to access the OpenEdge backend with a simple HTML page using the JSDO:

<!DOCTYPE html>
<html>
<head>
 <title>Simple JSDO Usage</title>
 <script src="http://code.jquery.com/jquery-1.11.3.min.js"></script>
 <script src="http://oemobiledemo.progress.com/jsdo/progress.jsdo.min.js"></script>
</head>
<body>
 <!-- results will be written here by JavaScript -->
 <script>
 (function () {
 // this function is called after data is returned from the server
 function onAfterFillCustomers(jsdo, success, request) {
 // for each customer record returned
 jsdo.eCustomer.foreach(function (customer) {
 // write out some of the customer data to the page
 document.write(customer.data.CustNum + ' ' + customer.data.Name + '
');
 });
 }
 try {
 var serviceURI = "http://oemobiledemo.progress.com/MobilityDemoService",
 catalogURI = serviceURI + "/static/mobile/MobilityDemoService.json",
 jsdosession, jsdo;
 // create a new session object
 jsdosession = new progress.data.JSDOSession({
 serviceURI: serviceURI,
 catalogURIs: catalogURI
 });
 jsdosession.login("", "").done(function(jsdosession, result, info) {
 // load the catalog for the session
 jsdosession.addCatalog(catalogURI)
 .done(function(jsdosession, result, details) {
 // create a JSDO
 jsdo = new progress.data.JSDO({ name: 'dsCustomer' });
 // calling fill reads from the remote OE server
 jsdo.fill().done(onAfterFillCustomers);
 });
 });
 }
 catch (e) {
 alert("Error instantiating objects: " + e);
 }
 }());
 </script>
</body>
</html>

View Example

http://oemobiledemo.progress.com/jsdo/example013.html

A publication of 4

The JavaScript file progress.all.4.0.min.js is included at

the top of the page, just under the title. This file contains the

code for the JSDOSession and JSDO objects.

Support for the JSDO is provided by two main objects:

1. The JSDOSession - manages authentication and

session operations

2. The JSDO - provides the access to the OpenEdge

backend by using the information in the JSDO Catalog

Once inside the JavaScript, the serviceURI and

catalogURI variables are declared. These settings are

used by the JSDO to access the OpenEdge service. The

serviceURI is the URL to the web application of the Mobile

Service. The catalogURI is the URL to the JSDO Catalog

file, a JSON file containing the definition for the resources

available in the OpenEdge Service. It specifies the schema

and operations for each of the resources.

Developers do not need to specify any other URIs to access

the data. For example, the developer can just call fill()

to read the data from the backend and does not need to

specify the URI that corresponds to the READ operation. This

information is resolved internally based on the information in

the catalog.

Operations to the server such as fill() (READ operation)

and saveChanges() (CREATE, UPDATE, and DELETE

operations) are asynchronous and need a callback to handle

the response. The JSDO supports promises and a subscribe/

unsubscribe approach to handle the response.

This example uses the the promises approach by calling
the .done() function of the promise returned by the
fill() method to handle the repose .done() function
of the promise returned by the fill() to specify the
onAfterFillCustomers function as the callback. The
.fail() function of the promise is used to specify a callback
to handle errors.

The onAfterFillCustomers function is called when the
OpenEdge Service returns the data to the JSDO. In that
function, the foreach() method is called to enumerate
over the results and write them out to the page. The JSDO
contains several other methods for handling data. Some
of these methods are getData(), find(), findById(),
sort(), and addRecords().

Figure 2: Web Browser output shown records retrieved using
the JSDO:

1. Lift TourAAA-
2. Upsilla Brent
3. Hoops
4. Go Fishing Ltd
5. Match Point Tennis
6. Match Point Tennis 2
7. Aerobics valine Ky
8. Game Set Match
9. Pihtiputaan Pyira
10. Just Joggers Limites

Update the serviceURI and the catalogURI to point

to your own Mobile Service. The Online Documentation
contains information on how to create a Mobile Service in
Progress Developer Studio.

3: Using the JSDO from the Kendo UI Grid Component

The following example shows the JSDO working with the
Kendo UI Grid. The Kendo UI Grid / Basic example from the
Kendo UI demo page was used as a starting point. In addition
to CRUD operations, right out of the box the Kendo UI Grid
offers features such as paging, skipping records, column

docking, adapting rendering and adjusting to screen size, and
easy theming.

Using this example, we’ll produce a visually appealing grid
with basic functionality looking like this:

http://documentation.progress.com/output/OpenEdge114/openedge114/#page/dvmad/OpenEdge.049.html

A publication of 5

Connecting the Kendo UI Grid to the OpenEdge Service requires wiring up Kendo UI Transports to the JSDO.

<!DOCTYPE html>
<html>
<head>
 <title>JSDO / Kendo UI Grid Example</title>
 <link rel="stylesheet" href="http://cdn.kendostatic.com/2015.1.429/styles/kendo.common.min.css" />
 <link rel="stylesheet" href="http://cdn.kendostatic.com/2015.1.429/styles/kendo.default.min.css" />
 <script src="http://cdn.kendostatic.com/2015.1.429/js/jquery.min.js"></script>
 <script src="http://cdn.kendostatic.com/2015.1.429/js/kendo.all.min.js"></script>
 <script src="http://oemobiledemo.progress.com/jsdo/progress.all.min.js"></script>
 <style>
 html {
 font-size: 12px;
 font-family: Arial, Helvetica, sans-serif;
 }
 </style>
</head>
<body>
 <div id="example">
 <div id="grid"></div>
 </div>
 <script>
 $(function() {
 function createGrid() {
 $('#grid').kendoGrid({
 // define transports as the class functions
 dataSource: {
 type: "jsdo",
 transport: {
 jsdo: "Customer"
 },
 error: function(e) {
 }
 },
 height: 400,
 groupable: true,
 reorderable: true,
 resizable: true,
 sortable: true,
 pageable: {
 refresh: true,
 pageSizes: true,
 pageSize: 10,
 buttonCount: 5
 },
 editable: 'inline',
 toolbar: ['create'],
 columns: [
 { field: 'CustNum', title: 'Cust Num', width: 1000 },

Figure 3: The Kendo UI Grid component showing records from an OpenEdge database

A publication of 6

 { field: 'Name' },
 { field: 'State' },
 { field: 'Country' },
 { command: ['edit', 'destroy'], title: ' ', width: '250px' }
]
 });
 }
 try {
 var serviceURI = "http://oemobiledemo.progress.com/CustomerService",
 jsdoSettings = {
 serviceURI: serviceURI,
 catalogURIs: serviceURI + "/static/mobile/CustomerService.json"
 },
 jsdosession,
 promise;

 // create a new session object
 jsdosession = new progress.data.JSDOSession(jsdoSettings);
 promise = jsdosession.login("", "");

 promise.done(function(jsdosession, result, info){
 jsdosession.addCatalog(jsdoSettings.catalogURIs)
 .done(function(jsdosession, result, details){
 createGrid();
 })
 .fail(function(jsdosession, result, details){
 alert("Error while executing addCatalog().");
 });
 });
 promise.fail(function(jsdosession, result, info){
 alert("Error while executing login().");
 });
 }
 catch (e) {
 alert("Error instantiating objects: " + e);
 }
 });

 </script>
</body>
</html>

View Example

Since Kendo UI is a JavaScript framework, the only thing
required to use it is to include the common CSS file, a theme
CSS file (default in this case), jQuery and the Kendo UI
JavaScript library. configures the dataSource property for the
Kendo UI Grid to use the JSDO dialect. The type property is
set to "jsdo" and the jsdo proeprty of the transport specifies
the name of the resource.

This example instantiates the JSDOSession and configures
the dataSource property for the Kendo UI Grid to use the

JSDO dialect. The type property is set to "jsdo" and the
jsdo property of the transport specifies the name of the
resource. When the Kendo UI DataSource is instantiated an
instance of the JSDO object will be created internally. All Kendo
UI widgets use a DataSource to define what data they can
display and manipulate. A Kendo UI DataSource can define
read, update, create and destroy endpoints that are called
“transports”. In this example with the new version of the
JSDO, the transports are defined automatically.

http://oemobiledemo.progress.com/jsdo/example014.html

A publication of 7

4: Sharing a Kendo UI DataSource Between Widgets

While a Kendo UI DataSource can be defined in a widget
configuration object (as we have seen so far), it can also be
defined as a stand-alone object. This allows it to be used by
more than one widget. Aside from rich data management
widgets, Kendo UI also includes an extensive charting a data
visualization library. These widgets use new HTML5 SVG
standards to draw animated and interactive charts right in

the browser. They also take care of handling older browsers
(back to IE 7) where SVG is not supported.

In order to add a chart to this page which displays the same
data as the grid, it is first necessary to pull the DataSource
declaration out into a separate object.

var serviceURI = base + 'http://oemobiledemo.progress.com/CustomerService',
 catalogURI = base + '/static/mobile/CustomerService.json',
 resourceName = 'Customer';

// create a datasource that can be shared between widgets
// use previously created session
var customerDS = new kendo.data.DataSource({
 transport: {
 jsdo: resourceName
 },
 error: function (e) {
 console.log('Error: ', e);
 }
});

// the grid’s dataSource can now be set directly to the customerDS object
$("#grid").kendoGrid({
 dataSource: customerDS,
 height: 350,
 groupable: true,
 reorderable: true,
 resizable: true,
 sortable: true,
 pageable: {
 refresh: true,
 pageSizes: true,
 pageSize: 10,
 buttonCount: 5
 },
 editable: "inline",
 toolbar: ["create"],
 columns: [
 { field: "CustNum", title: "Cust Num", type: "int", width: 100 },
 { field: "Name" },
 { field: "State" },
 { field: "Country" },
 { command: ["edit", "destroy"], title: " ", width: "250px" }
]
});

It is now possible to add any other Kendo UI widget or data visualization component and use the exact same DataSource.

A publication of 8

5: Using the JSDO with Kendo UI Charts

Kendo UI has an extensive charting and data visualization library. OpenEdge data retrieved using the JSDO can be displayed
using Kendo UI Charts. The data retrieved by the JSDO is processed in JavaScript then passed to a Kendo UI Chart using the
format that it expects. The Kendo UI DataSource is not used in these examples.

The following examples are included in the zip file:

• Pie Chart: The Sales per Person for Year 2014 chart, uses the JSDO to call an INVOKE operation called MonthlySales()
that returns the monthly sales per SalesRep, the data is processed to calculate the total for the sales and produce the
series that the Kendo UI Pie Chart component uses.

Figure 4: The Kendo UI Pie Chart component showing sales information from an OpenEdge database

Notes
This example is available at: http://oemobiledemo.progress.com/jsdo/example015.html

The source code for these and other sample programs using Kendo UI can be downloaded from the following location:
https://community.progress.com/community_groups/openedge_development/m/documents/2020.aspx

http://oemobiledemo.progress.com/jsdo/example015.html
https://community.progress.com/community_groups/openedge_development/m/documents/2020.aspx

A publication of 9

Bar Chart: The Monthly Sales for Year 2014 chart, combines a Kendo UI Grid with a Kendo UI Bar Chart. It uses the same
INVOKE operation as the previous example, but processes the data to calculate the total sales per month for the SalesRep
selected in the grid. If no SalesRep is selected, a total for all the SalesRep is shown.

Figure 5: A sample app combining the Kendo UI Bar Chart and Grid components

Notes
This example is available at: http://oemobiledemo.progress.com/jsdo/example016.html

6: Next Steps

Here are some ideas to further your knowledge on using the JSDO with Kendo UI:

• Download the zip file "Examples using the JSDO v4.0 with Kendo UI" from Progress Communities and run the examples in
your web browser: https://community.progress.com/community_groups/openedge_development/m/documents/2020.aspx

http://oemobiledemo.progress.com/jsdo/example016.html
https://community.progress.com/community_groups/openedge_development/m/documents/2020.aspx

A publication of 10

• Visit the JSDO open source content on GitHub: https://github.com/CloudDataObject
The JSDO is the JavaScript implementation of the Cloud Data Object (CDO). On this site, you will find the specification for
the CDO, source code and libraries for the JSDO (a JavaScript implementation of the CDO) and additional sample projects
using the JSDO.

• Visit the demo site for Kendo UI: http://demos.telerik.com/kendo-ui
On this site, you will find examples for the Kendo UI components including the Grid, ListView and DataSource components.

• Create a Mobile app using Telerik Platform (free trial is available at www.telerik.com) and use the JSDO to access data in the
OpenEdge or Rollbase backend:

1. Create a new AppBuilder Hybrid project (in a Hybrid app). Select the "Progress Data Service" template.
2. Use the info in the README.txt file to update the scripts/jsdosettings.js file to point to an existing OpenEdge Mobile
Service you have created or use the jsdoSettings in README.txt that refer to a demo service.
3. Use the Run menu to run your app in a Simulator.

To run the app on a Mobile device:

1. Download the Telerik AppBuilder companion app from the app store for your mobile device.
2. Build your app for the target device.
3. Scan the supplied QR Code to launch the app on the device. You can use the QR Code feature in the Telerik AppBuilder
companion app.

• Review the OpenEdge Mobile documentation to learn how to enable support for serverPaging, serverFiltering,
serverSorting and batching in your Business Entities using Progress Developer Studio 11.4 or greater:
https://documentation.progress.com/output/oemobile1151

7: References

The following links point to the documentation for Kendo UI and for OpenEdge related to this white paper:

• http://docs.telerik.com/kendo-ui/framework/datasource/overview

• http://docs.telerik.com/kendo-ui/api/javascript/data/datasource

• http://demos.telerik.com/kendo-ui/datasource/index

• http://demos.telerik.com/kendo-ui/grid/index

• http://demos.telerik.com/kendo-ui/grid/hierarchy

• http://demos.telerik.com/kendo-ui/pie-charts/index

• http://documentation.progress.com/output/OpenEdge114/openedge114/#page/dvmad/OpenEdge.049.html#

• http://documentation.progress.com/output/OpenEdge114/openedge114/#page/pdsoe/OpenEdge.0287.html#wwconnect_
header

• http://documentation.progress.com/output/OpenEdge115/openedge115/#page/pdsoe/building-mobile-applications.
html#wwconnect_header

• https://documentation.progress.com/output/oemobile1151

• https://community.progress.com/community_groups/openedge_development/m/documents/2078.aspx

https://github.com/CloudDataObject	

http://demos.telerik.com/kendo-ui
http://www.telerik.com
https://documentation.progress.com/output/oemobile1151
http://docs.telerik.com/kendo-ui/framework/datasource/overview
http://docs.telerik.com/kendo-ui/api/javascript/data/datasource
http://demos.telerik.com/kendo-ui/datasource/index
http://demos.telerik.com/kendo-ui/grid/index
http://demos.telerik.com/kendo-ui/grid/hierarchy
http://demos.telerik.com/kendo-ui/pie-charts/index
http://documentation.progress.com/output/OpenEdge114/openedge114/#page/dvmad/OpenEdge.049.html#
http://documentation.progress.com/output/OpenEdge114/openedge114/#page/pdsoe/OpenEdge.0287.html#wwconnect_header
http://documentation.progress.com/output/OpenEdge114/openedge114/#page/pdsoe/OpenEdge.0287.html#wwconnect_header
http://documentation.progress.com/output/OpenEdge115/openedge115/#page/pdsoe/building-mobile-applications.html#wwconnect_header
http://documentation.progress.com/output/OpenEdge115/openedge115/#page/pdsoe/building-mobile-applications.html#wwconnect_header
https://documentation.progress.com/output/oemobile1151

