
.NET

THE DEVELOPER’S GUIDE
TO THE NEW .NET

By Michael Crump and Sam Basu

2 A publication ofBack to Contents

CONTENTS

The Future Is Upon Us
Introduction 3

.NET Goes Open Source 3

Taking a Look at What OSS Means 3

The 10K-Foot View 4

.NET Goodies 5

.NET Foundation 5

Cross-Platform 5

ASP.NET vNext 5

Tooling 6

Windows 10
Introduction 7

A Package Manager Built-In 8

New Console Improvements 8

Modern Mode vs. Desktop Mode? 9

A Better Task Manager 11

Multiple Desktop Support 11

At the End of the Day… 11

Visual Studio 2015
Introduction 12

Custom Window Layouts 13

Better Code Editor 14

Expanded Shared Projects Templates 15

Intellisense for Bower and NPM 16

Debugging Lambdas 18

A Quick Look at Blend for

Visual Studio 2015 19

Wrap-Up 20

C# 6.0
Introduction 21

Diving in Feet First 22

Static Using Syntax 23

Auto-Property Initializers 23

Dictionary Initializers 24

Exception Filters 25

Async in a Catch and Finally Block 25

Name of Expressions 26

String Interpolation 27

More to Come 27

Roslyn
Introduction 28

Getting Started 29

I See a Compiler! 30

Taking a Look Under the Hood 32

SemanticModels 35

Next Steps for Exploring Roslyn 35

.NET on a Mac
Introduction 36

Windows Finds the Perfect Hosts 37

Visual Studio “Monaco” Editor 38

A Look at ASP.NET 42

OmniSharp 44

Sublime Text 44

Conclusion 46

Wrapping Up
The Future Looks Very Bright for .

NET Developers 47

Using the Telerik Stack to Be

More Productive 48

http://www.telerik.com

3 A publication ofBack to Contents

Introduction
Are you a .NET developer? If so, I’m sure you’re hearing a lot of buzz

lately, but may feel a little befuddled by all that’s going on. Major

changes can bring initial uncertainty and hesitancy.

However, allow me to prove to you why this is one of the best times

to be a .NET developer. This is no fluff–just a developer-to-developer

breakdown of what’s in store. The future of .NET is awesome, and I

think you’ll be glad you’re a part of it.

.NET Goes Open Source
November 12, 2014 will be marked as a day of monumental shift in

Microsoft development stacks. At the Connect() event in NYC, it was

announced that the core of your beloved .NET Framework is now

entirely open sourced and usable under a MIT license. This will include

everything needed to execute .NET code–including the Common

Language Runtime (CLR), Just-In-Time Compiler (JIT), Garbage

Collector (GC) and core .NET base class libraries.

THE FUTURE IS UPON US

So, let’s embrace this openness and grab the source code, use it,

build it or fork it. Microsoft is committed to accepting meaningful

community contributions, and you can be assured of the quality of

the .NET base classes. Every .NET developer is encouraged to check

out the keynote and breakout sessions now available on-demand at

the Connect() website.

Taking a Look at What OSS Means
As a refresher, Open Source Software (OSS) means that the software’s

source code is available publicly and usable (to study/change/

distribute) under a variety of license constraints. One fundamental

trait of OSS is it’s often developed in a collaborative manner, thus

leveraging continuous feedback. Don’t like something? Pull down

the source code and make changes to fit your needs. OSS benefits

tremendously from developer community involvement: meaningful

changes can be accepted back into the primary source code and

made available to all users, or projects can be forked, creating entirely

new offshoots.

http://www.telerik.com
http://www.visualstudio.com/en-us/connect-event-live-vs.aspx
http://blogs.msdn.com/b/somasegar/archive/2014/11/12/opening-up-visual-studio-and-net-to-every-developer-any-application-net-server-core-open-source-and-cross-platform-visual-studio-community-2013-and-preview-of-visual-studio-2015-and-net-2015.aspx
http://en.wikipedia.org/wiki/MIT_License
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://msdn.microsoft.com/en-us/library/0xy59wtx(v=vs.110).aspx
https://github.com/dotnet/corefx
http://www.visualstudio.com/connect-event-live-vs
http://en.wikipedia.org/wiki/Open-source_software

4 A publication ofBack to Contents

.NET vNEXT Client apps Web and services Openness

Windows store, WPF, Windows Forms,
Console apps and related libraries

Multi-purpose

Specialized

Common

ASP.NET vNext: Web Forms, MVC,
Web Pages, Web API, SignalR WCF

Device optimized
• Native compilation
• Small footprint, side-by-side
• Cross-device enabled

Runtime
Next gen JIT (RyuJIT)
SIMD (Data Parallelization)

Compliers
.NET Complier Platform (Roslyn)
Languages innovation

Libraries
BCL and PCL
Entity framework

Cloud optimized
• High throughput
• Small footprint, side-by-side
• Cross-device enabled

.NET
foundation

Some of you may believe that managing OSS is tricky or that it’s often

just a marketing gimmick. Sure, managing open source projects presents

new challenges, and some companies have cynically open-sourced

projects while not wholeheartedly buying into the spirit of OSS. And,

enterprises need to consider the legal implications of OSS in their

development stacks. Still, I believe the overall benefits of open source far

outweigh anything else.

The 10K-Foot View

The representation of .NET vNext above depicts how the framework

is moving forward–it is very familiar and different at the same time.

Fundamentally, it is the role and usage of .NET that is changing to offer

increased flexibility. .NET used to be a behemoth, serving desktop, web

or mobile app development and server installations with equal footing.

Moving forward, .NET will be much more specialized, serving cloud,

devices and servers with optimizations. Powering .NET will be a common

set of features (runtime, compilers and base libraries), but you get to pick

and choose exactly what you want to use. Are you waiting on IT or have

an elaborate process before you upgrade the .NET Framework on your

server? Now you can roll in the .NET framework self-contained into your

apps and have multiple versions side-by-side.

http://www.telerik.com

5 A publication ofBack to Contents

.NET Goodies
The .NET Framework vNext packs a punch when it comes to some

new language and compiler-level enhancements. For starters, there is

Roslyn–the .NET compiler platform. Roslyn allows for innovative C#

or VB compilations in the cloud and has loads of benefits inside IDEs

like Visual Studio, as well as third-party integrations. Windows Store

apps benefit from .NET Native ahead-of-time compilation, resulting

in significant performance improvements with quicker app start-up

times and smaller memory footprint. Desktop and server apps benefit

from next-generation 64-bit RyuJIT (Just-In-Time) compilers. All this

goodness for .NET is spreading to all application types and leading to

a convergence of development experiences.

.NET Foundation
Back at Build 2014 conference, Scott Guthrie announced the .NET

Foundation. Quoting the Home page:

“The .NET Foundation was created as an independent forum to foster

open development and collaboration around the growing collection of

open source technologies for .NET.”

The Foundation has since garnered a lot of support to host an

impressive array of OSS projects, both from Microsoft and supporting

partners, and serves as the de facto steward for open source .NET

repositories.

Cross-Platform
We do not live in a silo and Windows isn’t the only thing in the world–

this mindset change within Microsoft is evident in what’s next for the

.NET Framework. Official distributions of .NET will be available for Linux

and OS X! Want me to repeat that? Let it sink in, because it is a big deal.

Cross-platform developers are now welcome to use the .NET

framework on a platform of their choice. Web, desktop, cloud or mobile

development on almost any platform can now be targeted with the

.NET framework. You can build native ASP.NET web applications on a

Mac. You can build native iOS or Android applications using C#, along

with Windows counterparts. And you can build Hybrid single-codebase

cross-platform mobile apps using plain HTML/CSS/JS and the Apache

Cordova open source framework. This is a huge and welcome change

and can potentially spread the use of .NET to non-Microsoft developers.

ASP.NET vNext
Perhaps the biggest shift in mindset is evident in what’s next for ASP.

NET. Don’t fret though, as it’s just offering flexibility. Let me explain with

few points:

1. Per the trend, ASP.NET vNext is entirely open source; most of the

code is available in the .NET Foundation. You need not have insider

access anymore–simply look at the source code and build, change,

pull or fork.

http://www.telerik.com
http://blogs.msdn.com/b/csharpfaq/archive/tags/roslyn/
http://blogs.msdn.com/b/dotnet/archive/tags/dotnetnative/
http://blogs.msdn.com/b/dotnet/archive/tags/ryujit/
http://channel9.msdn.com/Events/Build/2014
https://twitter.com/scottgu
http://www.dotnetfoundation.org/
http://www.dotnetfoundation.org/projects
http://cordova.apache.org/
http://cordova.apache.org/
http://www.asp.net/vnext
http://www.asp.net/vnext
https://github.com/aspnet/home

6 A publication ofBack to Contents

2. ASP.NET vNext sees the convergence of several frameworks into a

unified programming model for MVC 6. This includes latest MVC,

WebPages, Web API, SignalR and Entity Framework. You can now

have a single controller that returns both MVC views and formatted

Web API responses on the same HTTP verb.

3. ASP.NET is completely modular: you pick the pieces you need and

get them through NuGet. The future of .NET on the server looks

interesting, to say the least.

4. There is a brand-new HTTP processing pipeline with terrific

throughput. The new KRuntime is the core of ASP.NET vNext–it

comes with built-in Version and Package managers along with

loads of other tooling.

5. ASP.NET applications can be hosted in IIS or outside in its own

processes. Yes, they run on Mono in Mac and Linux.

6. There are a lot of tooling improvements for ASP.NET in Visual

Studio. But you can also build ASP.NET applications natively on a

Mac. Simply use the Command Line Interfaces (CLI) and tools like

Sublime Text.

7. Web Forms are alive and healthy. Instead of using the modular

.NET framework, simply use the whole, just like old times. All your

tools and extensions for web forms carry forward.

8. ASP.NET vNext is cloud ready. Features like Session State and

Caching provide consistent APIs and adjust themselves with

behavior well-suited for cloud hosting versus traditional servers.

Dependency injection is rampant within ASP.NET: plug-and-play to

your heart’s desire.

9. Skip the Build step: simply make code changes and refresh your

browser to see them, courtesy of JIT compilation from Roslyn, the

new .NET compiler platform.

10. ASP.NET MVC syntax gets those little magical Tag Helpers. Take

time to learn about them, since they’re quite powerful.

Tooling
There are lots of tooling improvements for .NET developers inside

Visual Studio, but the big news about a brand-new Visual Studio SKU

trumps everything else. Remember the VS Express editions? They

were free, for sure, but you could only develop one type of application

with each specific VS Express edition. Now, there is the new Visual

Studio Community Edition–the one SKU to rule them all! Yes, it’s free,

and you can develop any type of .NET application with it: web, cloud,

desktop or mobile. It is a full-featured IDE and supports advanced

features like plugins and extensions.

http://www.telerik.com
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2014/DEV-B385#fbid=
https://github.com/aspnet/KRuntime
https://github.com/aspnet/Home/wiki/Version-Manager
https://github.com/aspnet/Home/wiki/Package-Manager
http://blogs.msdn.com/b/webdev/archive/2014/06/03/asp-net-vnext-in-visual-studio-14-ctp.aspx
http://blogs.msdn.com/b/webdev/archive/2014/08/12/develop-asp-net-vnext-applications-on-a-mac.aspx
http://blogs.msdn.com/b/webdev/archive/2014/08/12/develop-asp-net-vnext-applications-on-a-mac.aspx
http://www.sublimetext.com/
http://www.jeffreyfritz.com/2014/11/asp-net-tag-helpers-the-basics/
http://www.visualstudio.com/
http://www.visualstudio.com/

7 A publication ofBack to Contents

Introduction
Windows 10 was unveiled on September 30, 2014 as a technical preview

for individuals that signed up to become a Windows Insider. Since the

release, we’ve seen a lot of coverage from media outlets regarding new

features that end users will be excited about, but very little coverage

for developers. In this ebook, I’m going to point out several things that

caught my eye as a developer working daily with the Microsoft stack.

WINDOWS 10

10

http://www.telerik.com
http://windows.microsoft.com/en-us/windows/preview-iso

8 A publication ofBack to Contents

A Package Manager Built-In
Developers have grown to love package managers inside IDEs to install

frameworks, libraries and so on. They also enjoy OS package managers

to quickly find and install third-party applications. With Windows 10,

developers finally get one.

OneGet is a package manager included in Windows 10 that allows you

to install additional software from the PowerShell command line. Simply

open a PowerShell window and type the following command:

Install-Package -Name Firefox

In Windows 10, you will have access to this, as shown below. You

will want to read this blog post for more details on what commands

OneGet offers.

New Console Improvements
Every developer is looking for a way to enhance productivity, especially

using the Windows Console. In the Windows 10 Technical Preview, you

can turn on “Enable experimental console features” by right-clicking on

the command prompt and going to “Properties.” There you will find an

“Experimental” tab that you can turn on, as shown below.

Aside from the ability to use the control key to copy and paste text

in the console, it comes with several other features that are self-

explanatory. In this example, I changed the opacity, and you can see the

background coming through.

If you click on the link at the bottom of the Property page, you’ll be

taken to this site, which enables you to provide feedback and has a

comprehensive list of console improvements in Windows 10.

http://www.telerik.com
http://blogs.msdn.com/b/garretts/archive/2014/04/01/my-little-secret-windows-powershell-oneget.aspx
https://wpdev.uservoice.com/forums/266908
http://blogs.windows.com/buildingapps/2014/10/07/console-improvements-in-the-windows-10-technical-preview/

9 A publication ofBack to Contents

Modern Mode vs. Desktop Mode?
If you are a developer, one thing you are used to is switching between

“Desktop” and “Modern Apps” modes. I think it is safe to assume that

most developers who use Windows 8.1 stay in Desktop mode for most

of the day. This is where they are the most productive and where Visual

Studio, Expression Blend and Microsoft Office live. Although you may

switch back to the Modern App mode to run Windows 8.1 apps, search

or shutdown the PC occasionally, it’s rare (at least it is for me).

With Windows 10, you can change the signed-in user, turn the PC off,

pin Modern Apps to the Start menu and much more, without ever

leaving Desktop mode.

Windows 10 also has a Continuum mode that’s smart enough to

determine if you are using a Surface or a laptop, and launch either the

Desktop or Modern App mode, automatically. If you are using a Surface

and attach a keyboard, it will automatically go into Desktop mode–

remove the keyboard and it switches back. The graphic below shows

the new Start button in Windows 10.

http://www.telerik.com

10 A publication ofBack to Contents

You also have the ability to search everywhere on the local machine and even the Internet. This plays a

major role if you created a modern app, as it can be discovered from the Start button. Imagine that you

need a tip calculator; if you type “tip calculator” in the box, it will search your local machine for one. If it

can’t find one, it gives you Bing search results along with a suggested app in the Windows Store.

Once you launch a modern app, you are given several options previously only available via the share

charm, as shown below.

http://www.telerik.com

11 A publication ofBack to Contents

A Better Task Manager
While not exactly new to Windows 10, a better task manager has evolved.

How many times have you wanted an easy way to disable applications

that run automatically, or learn more detailed information about a

program or the impact of it starting up? As a developer, I’ve invested in

the latest hardware and don’t want an app to slow my system down or a

suspicious program that might be a virus. Thankfully, you can take care

of both of those issues with the Task Manager, as shown below.

Multiple Desktop Support
Another feature I found extremely helpful is multiple desktop support.

Imagine you want to have multiple desktops configured with certain

apps and be able to toggle through them as needed. With the Windows

10 Technical Preview, it’s very easy to do.

Simply select Task View, then Create Desktop and place the applications

in it, as needed. You can use the keyboard shortcut: WINKEY + Ctrl +

At the End of the Day…
Even though Windows 10 is brand-new, .NET developers will continue to

write the code they know and love. Thankfully, Telerik® has solutions for

Windows Universal Apps that span phone, tablet and desktop to WPF

and Web Apps, and they’re ready to implement today. Now, let’s take a

look at some of the improvements in Visual Studio 2015.

Left Arrow or WINKEY + Ctrl + Right Arrow to toggle between desktops.

You can even move a window to another desktop: right-click then select

Move to and the desktop of your choice.

http://www.telerik.com
http://www.telerik.com/windows-universal-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/wpf/overview.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/aspnet-ajax.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15

12 A publication ofBack to Contents

VISUAL STUDIO 2015

Introduction
Visual Studio 2015 includes many new features that enhance the way

developers work with everything, from the web and desktop to mobile

apps. Several features have had the spotlight, such as gesture support

in the editor, Cordova tooling, C++ enhancements and the new Android

emulator. But there are several other, less talked about features that

every developer using Visual Studio 2015 will love. With that said, let’s

jump straight in!

15

http://www.telerik.com

13 A publication ofBack to Contents

Custom Window Layouts
This feature comes in handy if you develop on multiple devices. Say, for

example, you use a 23-inch monitor during the day and a Surface Pro

to develop on your train ride home. You can quickly switch between

devices by going to Window -> Apply Window Layout and selecting one

you created earlier. Support for keyboard shortcuts is included, enabling

fast navigation to your favorite layout. Additionally, the profile roams

with you, as long as you are signed into Visual Studio 2015.

Below is an example of switching between my Surface device and a

desktop monitor. Notice that with the Surface device, I show only the

XAML file, whereas on the larger monitor I can see everything.

http://www.telerik.com

14 A publication ofBack to Contents

Better Code Editor
The code editor has been replaced with “Roslyn” to give you a new and

improved code editing experience. Light bulbs appear when you need

to include fixes to your code or refactor it. When you see a light bulb,

click it for suggestions based on the code it has analyzed.

In this example, the code editor has determined that we included

unnecessary “using” statements and helps remove them. You can first

generate a preview and have the changes affect the whole document,

project or solution. While those features have appeared in JustCode

and earlier versions of Visual Studio for years, we will be releasing a new

version of JustCode for Visual Studio 2015 that will take advantage of

Rosyln for enhanced productivity tools.

http://www.telerik.com
http://www.telerik.com/products/justcode.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://blogs.telerik.com/justteam/posts/14-10-30/what-s-ahead-for-justcode-and-roslyn?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15

15 A publication ofBack to Contents

Expanded Shared Projects Templates
How many times have you wanted to use a shared project outside of a Windows Universal App? Now you can!

After you open Visual Studio 2015 and search for “shared,” you will see the following:

Select the Visual C# Shared Project and create a class named Person.cs and add the following code:

class Person

{

 public string FirstName { get; set; }

 public Person()

 {

 FirstName = "Michael";

 }

}

http://www.telerik.com

16 A publication ofBack to Contents

Notice the only thing you have to do is reference the shared project.

Intellisense for Bower and NPM
If you create a new ASP.NET 5 web project, you’ll notice several items

load into the template automatically:

Create a new Console application and reference the shared project we

just created. Now you can write code such as:

var person = new Person();

Console.WriteLine(person.FirstName);

Console.ReadLine();

If you run the console app, it retrieves the FirstName from our shared

project. Add a WPF or Windows Form application and access the

Person class, as you normally would. This also works for class libraries.

After you add several projects, the solution explorer looks like this:

Aside from an updated file structure, you now have a folder called

Dependencies that contains Bower and NPM. Generally speaking, think

of Bower for client-side packages (such as jQuery and Angular) and

NPM for developer tools (such as Grunt and Gulp). Both of the package

managers are controlled by JSON files found in the solution.

• bower.json for Bower

• config.json for NPM

http://www.telerik.com

17 A publication ofBack to Contents

To add a library using Bower, simply open the bower.json file and add the

desired package. Here, we added the latest version of Angular, without

going to the Angular site to download and add it manually to the project.

http://www.telerik.com

18 A publication ofBack to Contents

Debugging Lambdas
Yes, the time has finally come where we can debug lambda

expressions. Let’s take a look at the following code:

List<int> elements = new List<int>() { 10, 20, 31, 40 };

// ... Find index of first odd element.

int oddIndex = elements.FindIndex(x => x % 2 != 0);

Console.WriteLine(oddIndex);

The console will return the value of 2. But what if we wanted to add a

watch and perform additional analysis of the expression?

In this sample, we added a watch on the breakpoint and the following

code:

elements.Where(v => (int)v > 11).ToArray()

As expected, it returned three items with a value greater than 11. This

information is useful in the current and other debugger windows. The

capability is supported in C# and Visual Basic.

http://www.telerik.com

19 A publication ofBack to Contents

A Quick Look at Blend for Visual
Studio 2015
Blend comes with several enhancements but, by far, the one that

was most-needed was the UI overhaul. Blend includes most of the

functionality that we have grown to love in Visual Studio.

Some notable features are:

• Basic debugging support

• Peek in XAML

• Custom Windows layouts

(see feature #1)

• Source control

• NuGet

• XAML IntelliSense

http://www.telerik.com

20 A publication ofBack to Contents

After just a few minutes of playing with the new Blend, I can tell Microsoft

is committed to making the experience similar that of Visual Studio.

Wrap-Up
By far, this is the best Visual Studio to date! We’ve only had a taste

of what Visual Studio 2015 has to offer. I encourage you to check the

documentation to learn about other features not included in this ebook.

Let’s switch gears and take a look at some of the language features

included in C# 6.0.

http://www.telerik.com

21 A publication ofBack to Contents

Introduction
After you install Visual Studio 2015, you can begin exploring the new

language features found in C# 6.0. Although there haven’t been as

many changes to the language as in previous versions of C#, several

features are worth noting. In this section, I’ll cover some of the language

enhancements in C# 6.0.

C# 6.0

http://www.telerik.com

22 A publication ofBack to Contents

By default, you’ll be writing in C# 6.0. Go to the project properties and

click “Build” then “Advanced” to change the language version, if needed.

Because we’ll be writing C# 6.0, leave this setting at the default option

or manually select C# 6.0, to follow along with this tutorial.

Diving in Feet First
Open Visual Studio 2015 and create a new C# Console Application, as shown

below. Don’t worry about changing the .NET Framework version number.

http://www.telerik.com

23 A publication ofBack to Contents

Static Using Syntax
In previous versions of C#, we would have to add the proper using

statement, such as System.Console, then write:

Console.WriteLine("Hello TDN!");

With C# 6, you can add the using statement and reference the

WriteLine method by itself, as shown below:

using System.Console;

namespace TDNCSharpSix

{

 class Program

 {

 static void Main(string[] args)

 {

 //Sample One

 WriteLine("Hello TDN!");

 }

 }

}

Auto-Property Initializers
In the past, we may have created our properties with a get-and-set,

then initialized our constructor with the value that we wanted:

public class Customer

{

 public Customer()

 {

 customerID = Guid.NewGuid();

 }

 public Guid customerID { get; set; }

}

Now, we can reduce this code block to one line, as shown below. No

longer do we need to create a setter or constructor.

public class Customer

{

 public Guid customerID { get; set; } = Guid.NewGuid();

}

http://www.telerik.com

24 A publication ofBack to Contents

Dictionary Initializers
Many C# developers felt the format shown below was confusing

for creating dictionaries, mainly because of the use of brackets and

quotation marks for the data.

Dictionary<string, string> customerNames = new Dictionary<string, string>()

{

 { "Michael Jordan", "Basketball" },

 { "Peyton Manning", "Football" },

 { "Babe Ruth", "Baseball" }

};

The compiler team decided to change this and make it more readable

with the following format. This new format will only save you a few

keystrokes, but it is much easier to read.

public Dictionary<string, string> customerNames = new Dictionary<string, string>()

{

 ["Michael Jordan"] = "Basketball",

 ["Peyton Manning"] = "Football",

 ["Babe Ruth"] = "Baseball"

};

http://www.telerik.com

25 A publication ofBack to Contents

Exception Filters
Exception filters have been supported in Visual Basic, but are new to

the C# compiler. They allow you to specify a condition for a catch block.

As shown in the following sample, the last catch statement will fire:

try

{

 throw new Exception("Error");

 }

 catch (Exception ex) if (ex.Message == "ReallyBadError")

 {

 // this one will not execute.

 }

 catch (Exception ex) if (ex.Message == "Error")

 {

 // this one will execute

 WriteLine("This one will execute");

}

Async in a Catch and Finally Block
Many developers will love this feature, because they often need to log

exceptions to a file or database without blocking the current thread.

Here is an example of how one would work:

public static async void DownloadAsync()

{

 try

 {

 throw new Exception("Error");

 }

 catch

 {

 await Task.Delay(2000);

 WriteLine("Waiting 2 seconds");

 }

 finally

 {

 await Task.Delay(2000);

 WriteLine("Waiting 2 seconds");

 }

}

http://www.telerik.com

26 A publication ofBack to Contents

Name of Expressions
How many times in your code do you retrieve the name of a member

of your class? Typically, you would wrap the field in quotation marks, as

shown below.

public static void DoSomething(string name)

{

 if (name != null) throw new Exception("name");

}

However, wrapping the field in quotation marks forces you to put strings

in your code to represent the name of a member. In C# 6.0, there is

a new operator called nameof that enables you to refactor code to

remove those string literals. The sample shown below demonstrates

how to refactor that same method.

public static void DoSomething(string name)

{

 if (name != null) throw new Exception(nameof(name));

}

The result is cleaner code and safety when retrieving member names.

http://www.telerik.com

27 A publication ofBack to Contents

String Interpolation
Prior to C# 6.0, you could concatenate two or more strings together in

one of the following ways:

string firstName = "Michael";

string lastName = "Crump";

WriteLine("Name : " + firstName + " " + lastName);

WriteLine(string.Format("Name : {0} {1}", firstName, lastName));

In C# 6.0, there is a cleaner format, as shown in the first WriteLine call.

Also, you can place expressions directly in the string literal to evaluate

an expression:

string firstName = "Michael";

string lastName = "Crump";

int orderNumber = 250000;

WriteLine("Name : \{firstName} \{lastName}");

WriteLine("Name : \{firstName} \{lastName}\nDiscount :\{orderNumber == 250000 ? " You

get 25% off your order!" : ""}");

In this sample, the console returns the following information, as it

evaluates the orderNumber is equal to 250,000; otherwise won’t

print anything:

Michael Crump

Discount : You get 25% off your order!

More to Come
It looks like C# 6 will be the

starting point for many new

projects in 2015. While I touched

on several of my favorite language

features, there are many more. I

encourage you to keep watch on

http://msdn.microsoft.com/ for

updated information.

Speaking of languages, let’s take a

look at Roslyn.

http://www.telerik.com
http://msdn.microsoft.com/en-US/

28 A publication ofBack to Contents

Introduction
Roslyn is an open-source C# and Visual Basic compiler with code

analysis APIs for Microsoft's development stack. Very few people

realize that Roslyn came out in October, 2011 as a preview that worked

with Visual Studio 2010 SP1. While there have been several changes

since 2011, Roslyn took the spotlight at the Build conference in 2014,

when Microsoft open-sourced it and made it available for Visual

Studio 2013. Today, as you can see on the landing page, Visual Studio

2015 is front and center for Roslyn. Here, I'll walk you through a few

samples that I found helpful for wrapping my head around Roslyn.

ROSLYN

ROSLYN

http://www.telerik.com
http://roslyn.codeplex.com/

29 A publication ofBack to Contents

Getting Started
One of the easiest ways to get started with Roslyn is to download and install Visual

Studio 2015 . Then, navigate to the Roslyn Project and download the source code.

You should see a folder containing several files and folders. We are only concerned

with the one named Src, so navigate to it, as shown below:

Double-click on the Roslyn.sln file to load the

project. Upon first launch, build the solution and

navigate one directory back to see Binaries. Then

navigate inside Debug, as shown here:

http://www.telerik.com
http://www.visualstudio.com/en-us/downloads/visual-studio-2015-downloads-vs.aspx
http://www.visualstudio.com/en-us/downloads/visual-studio-2015-downloads-vs.aspx
https://roslyn.codeplex.com/SourceControl/latest

30 A publication ofBack to Contents

I See a Compiler!
Anyone used to C# will be familiar with csc.exe; we just compiled our

own version of it. How does that help you?

Run csc.exe from the command prompt:

There aren’t any surprises here, because you didn’t specify a source file

to be compiled, but what is really interesting is the ability to look into the

source code and understand the warning and error messages generated.

C:\Users\Michael\Documents\Visual Studio 2015\Projects\roslyn\Binaries\Debug>csc

Microsoft (R) Visual C# Compiler version 1.0.0.0

Copyright (C) Microsoft Corporation. All rights reserved.

warning CS2008: No source files specified.

error CS1562: Outputs without source must have the /out option specified

C:\Users\Michael\Documents\Visual Studio 2015\Projects\roslyn\Binaries\Debug>

http://www.telerik.com

31 A publication ofBack to Contents

If we search for “Outputs without source must have the/out option

specified,” we find the place in the code from which it pulls that error

message. In this case, it’s coming from the ResourceManager class.

To change the way the compiler behaves as it reads through a C#

program, read this blog post, which describes how Anders Hejlsberg

added support for French quotes in the C# compiler by adding just a

few lines of code.

http://www.telerik.com
http://blogs.msdn.com/b/csharpfaq/archive/2014/04/03/taking-a-tour-of-roslyn.aspx

32 A publication ofBack to Contents

Taking a Look Under the Hood
Download the following files:

• Visual Studio 2015 SDK

• Visual Studio Project Templates for Roslyn

• Syntax Visualizer for Roslyn

Once those are installed, open Visual Studio 2015 and navigate to the

"Compiler Platform Console Application" template:

Once the project spins up, you’ll notice several references have been

added; primarily, you’ll be using the Microsoft.CodeAnalysis namespaces.

http://www.telerik.com
http://www.visualstudio.com/en-us/downloads/visual-studio-2015-downloads-vs
http://visualstudiogallery.msdn.microsoft.com/849f3ab1-05cf-4682-b4af-ef995e2aa1a5
http://visualstudiogallery.msdn.microsoft.com/70e184da-9b3a-402f-b210-d62a898e2887

Set a breakpoint on the last curly brace, and turn on the Roslyn

Syntax Visualizer by going to View -> Other Windows -> Roslyn Syntax

Visualizer. Once you’ve done this, you’ll see the following (which should

be blank at the moment):

33 A publication ofBack to Contents

Add the following code to your Main method:

public static void Main(string[] args)

 {

 SyntaxTree tree = CSharpSyntaxTree.ParseText(

 @"using System;

 using System.Collections.Generic;

 using System.Text;

 namespace HelloWorld

 {

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine(""Hello, TDN!"");

 }

 }

 }");

 var root = (CompilationUnitSyntax)tree.GetRoot();

 var compilation = CSharpCompilation.Create("HelloTDN")

 .AddReferences(references: new[]

{ MetadataReference.CreateFromAssembly(typeof(object).Assembly) })

 .AddSyntaxTrees(tree);

 }

http://www.telerik.com

Run the application and scroll to the top of the document. Click on

SyntaxTree as declared in code, and you’ll be taken to the proper node.

From there, you can view a vast variety of information. Here, I’m looking

at the Leading and Trailing WhiteSpace. Of course, you can dig deeper

and learn exactly what is going on underneath the hood of your app.

You have just seen an example of compilation. A Compilation is an

abstract class with language-specific derivatives.

34 A publication ofBack to Contents

http://www.telerik.com

SemanticModels
The next step is to ask the compilation for a SemanticModel for any

SyntaxTree contained in that compilation.

SemanticModels as can be queried to answer questions such as:

• “What names are in scope at this location?”

• “What members are accessible from this method?”

• “What variables are used in this block of text?”

• “What does this name/expression refer to?”

Such queries can be achieved with the following code:

var model = compilation.GetSemanticModel(tree);

var nameInfo = model.GetSymbolInfo(root.Usings[0].Name);

var systemSymbol = (INamespaceSymbol)nameInfo.Symbol;

foreach (var ns in systemSymbol.GetNamespaceMembers())

{

 Console.WriteLine(ns.Name);

In this sample, we create a model using the GetSemanticModel method

passing in our tree we defined earlier. We declare another variable,

nameInfo, which will bind to the "using System;" namespace and pull all

the systems for the member into a console window.

Congratulations! You just successfully bound a name to find a symbol.

Next Steps for Exploring Roslyn
I hope this overview gives you an idea of how powerful Roslyn is. While

I was writing this article, I came across a lot of documentation that

was outdated, but it looks like the community is quickly fixing it and

adding more features. We haven't dug into binding expressions, syntax

transformation and diagnostics, but, thankfully, those features have been

documented.

At Telerik, we've already been working with Roslyn. Look for a new

version of JustCode for Visual Studio 2015, which will leverage Roslyn to

help enhance developer productivity.

35 A publication ofBack to Contents

http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
http://blogs.telerik.com/justteam/posts/14-10-30/what-s-ahead-for-justcode-and-roslyn?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com

36 A publication ofBack to Contents

Introduction
Let’s face it–Apple makes some of most desired notebooks in the

industry. The MacBook Pro Retina is loved by developers for its screen

real estate and silent high performance. The MacBook Airs, on the other

hand, offer portability and long battery life for productivity. You’re not

alone in your love for the notebooks with glowing fruit.

If you’re a Windows developer, you may be wondering if it’s possible to

use your new Apple device as a C#-friendly development machine. Or,

you may be a long-time Mac developer, but stoked about .NET going

Open Source announcements and want to try out some native ASP.

NET on OSX. Either way, your goal is to marry two of the best things for

developers: quality Mac hardware with the ease and popularity of C#.

The good news is they coexist happily!

.NET ON A MAC

.NET

http://www.telerik.com

37 A publication ofBack to Contents

Windows Finds the Perfect Hosts
It’s always good to see the occasional innovation from PC

manufacturers, like the recent beautifully thin Lenovo 2-in-1 Yoga Pro

3. Not to mention Microsoft’s own tablet convertible Surface Pro 3

is selling like hot cakes. But it’s also no secret that MacBooks make

wonderful laptops for running full Windows as an OS. As an added

bonus, if you have a MacBook Pro Retina laptop, your Windows

installation enjoys excellent high resolution. Developers love screen real

estate, even at the expense of squinting eyes, right?

Turns out, there are two ways you can run Windows on a Mac:

1. Bootcamp: This is Apple’s way of allowing you to run Windows on

an Intel-based Mac. Simply use the built-in Bootcamp Assistant,

make a partition and install Windows. Then you can easily boot

into Windows instead of OSX and reuse all of the I/O (input-output)

drivers for peripherals. In this mode, Windows is running natively

“on the metal,” and you get full performance benefits. Of course, this

means you can install Visual Studio and write C# all day, just as in a

Windows machine.

2. Virtual Machines: If choosing an OS to boot into isn’t your cup of

tea, your other option is to run Windows in a virtual machine (VM)

with OSX acting as the host OS. There exists dedicated software

that will do the heavy lifting for your VM, such as managing

virtualization, memory and peripherals. Parallels and VMWare

Fusion are two excellent options for running Windows VMs on your

Mac. With customizable virtualization, resource fine-tuning options

and easy switchability between Windows/OSX, you should be

rocking Windows running as a VM in no time. Just as easily, you can

install Visual Studio inside your Windows VM and write C# to your

heart’s content.

Now, whether you go BootCamp or VM, you are running full Windows.

And that means, you get to rock out Telerik DevCraft suite to

supercharge your .NET productivity for any type of application you are

building!

http://www.telerik.com
http://shop.lenovo.com/us/en/landingpage/yoga-3-pro/
http://shop.lenovo.com/us/en/landingpage/yoga-3-pro/
http://www.microsoft.com/surface/en-us/products/surface-pro-3
http://www.apple.com/support/bootcamp/
http://www.apple.com/support/bootcamp/
http://support.apple.com/en-us/HT201468
http://www.parallels.com/
http://www.vmware.com/products/fusion/
http://www.vmware.com/products/fusion/
http://www.telerik.com/devcraft

38 A publication ofBack to Contents

Visual Studio “Monaco” Editor
Although not yet fully baked, C# is about to get a new ubiquitous

code editor–the browser. C# in the browser comes courtesy of

a special light-weight editor codenamed “Monaco,” which was

launched with Visual Studio 2013. To quote Microsoft:

With Monaco, we want to provide
developers with a lightweight, friction-
free companion to the Visual Studio
desktop IDE that is accessible from
any device on any platform. Monaco
is a rich, browser-based, code-focused
development environment optimized for
the Windows Azure platform, making it
easy to start building and maintaining
applications for the cloud.”

Check out this Channel 9 video series on how to get started with

Visual Studio Online Monaco editor, and to keep up with the latest

enhancements.

Want to try out the Monaco editor today?

It’s geared to work with Windows Azure websites hosted in Windows

Azure, for now, but you can absolutely write the C# code-behind code

for the server-side, hook up your code to a source control and perform

builds/deployments.

Here’s how to get started:

1. First, create a Windows Azure account Sign up for free.

2. Login to the Windows Azure Management Portal

3. Create a new Azure Website from the big ‘+’ sign on bottom left

4. Open up Website Configuration and turn on the option for “Edit in

Visual Studio Online”

5. From the website dashboard, click on “Edit in Visual Studio Online”

6. Enjoy C# edits in your browser

http://www.telerik.com
http://channel9.msdn.com/Series/Visual-Studio-Online-Monaco
http://azure.microsoft.com/en-us/
https://manage.windowsazure.com/

39 A publication ofBack to Contents

Next, navigate to your newly created

Website Dashboard and click on the

“Configure” tab. Scroll down a little

with your configurations and you’ll

see the “Edit in Visual Studio Online”

setting. Turn it on to see the magic:

Pictures are worth a thousand words, right? Here are the steps visually,

starting with creating the Azure website (be sure to choose your Azure

Subscription and hosting appropriately):

http://www.telerik.com

40 A publication ofBack to Contents

Back on your Website Dashboard,

the “Edit in Visual Studio Online”

link will light up:

Go ahead, and click the link. Voila—a new page opens

up with light-weight code edits for your Windows

Azure Website. You can see here that I added a new

Test.cs file and I’m able to write C# code in Chrome

browser on my Mac—how cool is that!

http://www.telerik.com

41 A publication ofBack to Contents

Visual Studio Monaco editor also supports a large

number of shortcut keyboard commands, giving you

productivity in a browser for the win.

If editing HTML/CSS/JS, you’ll find the Visual Studio Monaco editor

rather smart with Intellisense; the C# experience keeps improving every

release. You’ll also find solid support for online editing of LESS, PHP,

Node.js and TypeScript. When done with your edits in the browser,

simply fire up a build and see output in a console window, or even run

your Azure website to pick up the changes. In effect, you can build out

a full ASP.NET website in your browser, including writing C# on any

browser running on your Mac OSX.

http://www.telerik.com

42 A publication ofBack to Contents

A Look at ASP.NET
The best has been reserved for last, because you’re going to have the most

fun writing C# on a Mac when building modern web/mobile applications

with ASP.NET. You may have already heard about .NET Framework core

being open sourced; the future of .NET is modular, cross-platform and

rather exciting.

ASP.NET vNext leads the way, with improved tooling and flexible hosting

outside of IIS using a new KRuntime. If you’re using the core cross-platform

.NET Framework, your ASP.NET web applications will run everywhere. Yes,

that means natively in OSX on your Mac!

Getting Ready

Before you start rocking C# on your Mac to build your next ASPNET vNext

application, there are few things to set up in your environment. Let’s walk

through the steps:

1. First, visit the ASP.NET vNext home on GitHub to make sure

you understand the moving pieces and check minimum system

requirements.

2. ASP.NET vNext architecture is modular, and you’ll be using several

packages or components. Let’s get some prerequisites out of the way

first.

3. Install the latest version of Node and grab the latest ubiquitous

package manager NPM.

4. Homebrew is another excellent open source package manager that

allows you to install/manage software that can’t be installed from the

OSX terminal. So, install Homebrew as well–simply fire up the following

Ruby code in your terminal:

ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

5. Tap the ASP.NET vNext related Git repositories using Homebrew, like so:

brew tap aspnet/k

6. Next, install the K Version Manager (KVM). You can use KVM to install

and switch between different ASP.NET runtimes. Simply fire up the brew

command (note this step will install Mono on your OSX if not already

present).

brew install kvm

Alternatively, you can always manually pull down Mono from GitHub and

build it yourself; ASP.NET runtime on a Mac depends on Mono for now.

7. After you set up KVM, install the latest K RunTime Environment (KRE),

like so:

kvm upgrade

8. Now, you are ready to run ASP.NET vNext natively on your Mac,

technically speaking. But a few more handy tools will help down the line,

starting with Yeoman. Yeoman is a sleek and open source scaffolding

tool that can work for your ASP.NET projects. Grab Yeoman and the ASP.

NET Yeoman generators:

npm install –global yo

npm install –g generator-aspnet

http://www.telerik.com
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
http://developer.telerik.com/featured/future-net/
https://github.com/aspnet/home
http://blogs.msdn.com/b/webdev/archive/2014/06/03/asp-net-vnext-in-visual-studio-14-ctp.aspx
https://github.com/aspnet/KRuntime
https://github.com/aspnet/home
http://nodejs.org/download/
https://www.npmjs.org/
https://github.com/aspnet/Home/wiki/version-manager
http://www.mono-project.com/
https://github.com/mono/mono.git
https://github.com/aspnet/KRuntime
http://yeoman.io/

43 A publication ofBack to Contents

Running ASP.NET

Now you are ready to start building your ASP.NET vNext web

applications on OSX. Let’s start with the Yeoman ASP.NET scaffolding

tool in an appropriate folder, like so:

yo aspnet

Here’s a glimpse of the expected behavior:

In this case, an ASP.NET MVC application scaffolding was requested.

Navigate to the directory where you did your scaffolding to find the

exact project structure with all requisite files, just as if you had created

an ASP.NET MVC web project using Visual Studio:

Now that you have your ASP.NET project set up, how do you run it in

a Mac? This is where the KVM Command line comes into play. Simply

navigate to your ASP.NET project directory in-terminal and run the

following command to resolve any missing package dependencies:

kpm restore

Finally, use the Mono runtime to host your ASP.NET web application.

Simply fire up the following command:

k kestrel

http://www.telerik.com

44 A publication ofBack to Contents

Your terminal console should show a message indicating the site has

been started. Now, simply pull up any browser and navigate to http://

localhost:5004 (ASP.NET running on LocalHost in Chrome on a Mac):

Accept it: the first time you see a native ASP.NET web application

running on a Mac, you’ll have a “WHOA” moment!

OmniSharp
At this point, you have a fully scaffolded ASP.NET web application

running natively on your Mac. But you need a little more help as you get

to working on the website’s code, especially if you’re writing a lot of C#

server-side code. Enter the marvelous OmniSharp.NET.

It may be adventurous to run .NET applications on OSX or Linux, but

is it practical to write C# code outside of the Visual Studio comfort?

OmniSharp is here to help. To quote the website omnisharp.net,

“OmniSharp is a family of Open Source projects, each with one goal:

to enable great .NET development in YOUR editor of choice.” This

goal extends to non-Windows editors, the likes of Sublime Text, Atom,

Emacs, Brackets or Vim. Yep, you can write C# in any of those editors!

Sublime Text
One of the most popular editors is Sublime Text. Want to write C# in

Sublime Text and get some of the benefits you expect from Visual

Studio? Turns out, efforts are underway to make C# a first-class citizen

in editors such as Sublime Text.

Here are the few simple steps to set up Sublime Text for writing C# in

ASP.NET applications:

1. Download the beta of Sublime Text 3

2. Make sure to have the latest Sublime Text Package Manager plugin

installed

3. Install the Kulture plugin through Package Control

4. Install the Omnisharp plugin through Package Control

5. Make some C# language specific settings to provide appropriate

Intellisense event triggers

That’s all the magic that’s needed. Now, open up the Yeoman scaffolded

ASP.NET vNext project from your OSX directory in Sublime Text (point

http://www.telerik.com
http://localhost:5004/
http://localhost:5004/
http://www.omnisharp.net/
http://www.sublimetext.com/
http://blog.jonathanchannon.com/2014/11/12/csharp-first-class-citizen-sublime-text/
http://www.sublimetext.com/3
https://packagecontrol.io/installation
https://packagecontrol.io/installation
https://packagecontrol.io/packages/Kulture
https://sublime.wbond.net/packages/OmniSharp
https://github.com/OmniSharp/omnisharp-sublime#c-language-specific-settings

45 A publication ofBack to Contents

to root folder). Sublime shows all your files in a Project tree, each of which is perfectly editable. Open up or create a

new C# file and start typing. Boom! Visual Studio like Intellisense as you type words, all inside Sublime Text:

Even more, try a context-specific

dot (.) operator in C# - pure

Intellisense and contextual code

completion prompts, as seen

here:

http://www.telerik.com

46 A publication ofBack to Contents

How cool is that? Wonder how all this is working in Sublime Text or

other editors? This is courtesy of the OmniSharpServer. According to

Jason Imison, “OmniSharpServer is a local web server (written in Nancy)

that accepts requests to various different endpoints, which returns

results about the code you send to it. For example, in Sublime Text,

when you have a string variable and you type (.) after the variable name,

a request is sent to OmniSharpServer with a specific payload, and the

response contains all the possible completions for that variable.

NRefactory is the C# analysis library used in the OmniSharpServer. It

allows applications to easily analyze both syntax and semantics of C#

programs. It is quite similar to Microsoft's Roslyn project, except that

it is not a full compiler–NRefactory only analyzes C# code. It does not

generate IL code.” 1

Sounds complicated, but you get to reap the benefits as the open

source community works on OmniSharp.NET with Microsoft’s

endorsement. Essentially, as you type your C# code, the locally hosted

Omnisharp Server is doing all the heavy lifting, trying to provide you

with contextual Intellisense, while stopping short of actually compiling

your code. You get to write C# on your editor of choice, complete with

Visual Studio-like code editor features. As for Sublime Text, you get to

enjoy features like Intellisense, Go To Definition, Rename, Find Usages,

Go To Implementation, Format Document, Override, Add Reference,

Syntax/Semantic Errors, Code Refactoring, Build Solution and many

more. Check out this wonderful post on what to expect when writing C#

in Sublime Text, complete with GIFs for each interaction.

Conclusion
Choice is a good thing for developers, and being able to choose the

most popular .NET language on one of the best possible laptop seems

like a solid match. Pick what works best for you: VM, browser or native

editors with OmniSharp. The bottom line is you can write C# on a Mac,

like a champ.

 1 Source: http://blog.jonathanchannon.com/2014/11/12/csharp-first-class-citizen-sublime-text/

http://www.telerik.com
https://github.com/OmniSharp/omnisharp-server
http://twitter.com/jasonimison
http://www.nancyfx.org/
http://blog.jonathanchannon.com/2014/11/12/csharp-first-class-citizen-sublime-text/
http://blog.jonathanchannon.com/2014/11/12/csharp-first-class-citizen-sublime-text/

47 A publication ofBack to Contents

The Future Looks Very Bright for
.NET Developers
Microsoft is focusing on the convergence of the Operating Systems

(OS) and developer platforms, and .NET is your best bet. Windows

10 represents the next-generation OS for most devices you’re used

to running Windows on and then some: desktops, laptops, phones,

“Internet of Things (IoT)” devices and embedded devices. Other

application stacks or technologies you have used with .NET in the

past all move forward–simply choose the modular or complete .NET

framework based on your needs. Check out the recently published

roadmap and tooling improvements for WPF, which were met with

much fanfare from the .NET development community. Let’s embrace

the changes and gear up for a flexible, better tomorrow. .NET is a

best-in-class tooling and open source cross-platform approach to

building the next generation of amazing apps for any platform.

WRAPPING UP

http://www.telerik.com
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/the-roadmap-for-wpf.aspx

48 A publication ofBack to Contents

Using the Telerik Stack to Be More
Productive
Now that we’ve explored the new goodies coming in 2015 from

Microsoft, let’s take a step back and see how Telerik can help make

development even easier.

For all .NET developers, Telerik DevCraft™ suite is a complete .NET

toolbox for web, mobile and desktop development. The DevCraft bundle

includes UI controls for all .NET platforms, reporting, productivity, code

quality and data tools:

• For the web developer, we have UI components for ASP.NET AJAX,

MVC and Silverlight to jumpstart your next app. We also have a

HTML5/JS Framework called Kendo UI.

• For the desktop developer, we are still making advances in

WinForms and WPF.

• For the mobile developer, we have UI for Windows Universal,

Windows Phone and even Xamarin components.

• We haven’t forgotten about productivity and quality, as we have

JustCode (the new version is based off of Roslyn), JustMock and a

completely free Testing Framework. For debugging, we have two

popular and free tools, Fiddler and JustDecompile. Looking for that

memory leak? Check out JustTrace.

• For those of you into data, we have Reporting and Data Access.

Both of which are crucial in enterprise applications.

Our Telerik PlatformSM solution, which allows you to develop cross-

platform and mobile applications, has several key features that .NET

developers can take advantage of, such as Analytics and Backend

Services. Our Visual Studio extension that enables you to create hybrid

apps in your favorite IDE, without owning a Mac.

Download a free trial of the DevCraft suite
with free support for 30 days

http://www.telerik.com
http://www.telerik.com/devcraft?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/devcraft?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/aspnet-ajax.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/aspnet-mvc?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/silverlight/overview.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/kendo-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/winforms.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/wpf/overview.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/windows-universal-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/windows-phone.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/xamarin-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/justcode.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/mocking.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/teststudio/testing-framework?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/fiddler?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/decompiler.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/memory-performance-profiler.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/products/reporting.aspx?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/data-access
http://www.telerik.com/platform?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/appbuilder?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/appbuilder?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/analytics?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/backend-services?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/backend-services?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15
http://www.telerik.com/download/devcraft?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-devcraft-future-dotnet-jan15

49 A publication of

Michael Crump

Michael Crump works at Telerik and is a MS MVP, coder, blogger

and speaker of various software development topics. He has a

passion for a wide range of technology stacks that involve web

and mobile. In his free time, he likes to experiment with wearables

and is a big fan of IoT. Michael can be found on twitter at @

mbcrump or by visiting michaelcrump.net.

Sam Basu

Sam Basu (@samidip) is a technologist, Apress/Pluralsight author,

speaker, Microsoft MVP, believer in software craftsmanship, gadget-lover

and Developer Advocate for Telerik. With a long developer background,

he now spends much of his time advocating modern web/mobile/cloud

development platforms on Microsoft/Telerik stacks.

He passionately helps run The Windows Developer User Group, labors

in M3 Conf organization, serves as INETA Secretary and can be found

with at-least a couple of hobbyist projects at any time. His spare times

call for travel and culinary adventures with the wife.

Find out more at http://samidipbasu.com.

ABOUT THE AUTHORS

Thanks for reading, and we hope this ebook helped
supercharge your .NET knowledge.

http://www.telerik.com
http://twitter.com/mbcrump
http://twitter.com/mbcrump
http://michaelcrump.net/
https://twitter.com/samidip
http://thewindowsdeveloperusergroup.com
http://m3conf.com/
http://www.ineta.org/
http://samidipbasu.com/

	THE FUTURE IS UPON US
	Introduction
	.NET Goes Open Source
	Taking a Look at What OSS Means
	The 10K-Foot View
	.NET Goodies
	.NET Foundation
	Cross-Platform
	ASP.NET vNext
	Tooling
	WINDOWS 10

	Introduction
	A Package Manager Built-In
	New Console Improvements
	Modern Mode vs. Desktop Mode?
	A Better Task Manager
	Multiple Desktop Support
	At the End of the Day…
	VISUAL STUDIO 2015

	Introduction
	Custom Window Layouts
	Better Code Editor
	Expanded Shared Projects Templates
	Intellisense for Bower and NPM
	Debugging Lambdas
	A Quick Look at Blend for Visual Studio 2015
	Wrap-Up
	C# 6.0

	Introduction
	Diving in Feet First
	Static Using Syntax
	Auto-Property Initializers
	Dictionary Initializers
	Exception Filters
	Async in a Catch and Finally Block
	Name of Expressions
	String Interpolation	
	More to Come
	ROSLYN

	Introduction
	Getting Started
	I See a Compiler!
	Taking a Look Under the Hood
	SemanticModels
	Next Steps for Exploring Roslyn
	.NET ON A MAC

	Introduction
	Windows Finds the Perfect Hosts
	Visual Studio “Monaco” Editor
	A Look at ASP.NET
	OmniSharp
	Sublime Text
	Conclusion
	WRAPPING UP

	The Future Looks Very Bright for .NET Developers
	Using the Telerik Stack to Be More Productive

