
with Telerik tools

A publication of

Build cross-platform
mobile applications

www.telerik.com

Telerik provides a set of tools for creating cross-platform mobile applications
and additionally exposes a robust set of cloud services for storing data. Icenium
provides the environment for developing and deploying the application, the
Kendo UI Mobile framework provides the means to structure the application
and a set of common user interface components, and Icenium Everlive provides
the cloud storage for data via a set of REST services.

This tutorial will demonstrate how to build a simple application using these
three tools.

Hybrid apps
(iOS, Android, Windows Phone)

FR
O

N
TE

N
D

BA
CK

EN
D

PhoneGap

Data

RESTful services

JavaScript SDK

Files

Intellisense

User Management

jQuery Mobile

Cloud Code

Phone Simulator

Backend Portal

Source Control

Email notifications

2Share this article! Back to Contents

http://www.icenium.com/
http://demos.kendoui.com/mobile/overview/index.html
https://www.everlive.com
www.twitter.com
www.facebook.com

Icenium Everlive provides a sample application that demonstrates the usage of
its REST services together with the Kendo UI Mobile framework. The application
is a social app that allows a user to post short messages and to view messages
of other users. The sample is available for download on this address. Here are
images of the app:

This tutorial will demonstrate how to build such application using the tools
provided by Telerik.

Sample application
TOOLS PROVIDED BY TELERIK

3Share this article! Back to Contents

https://www.everlive.com/Files/DemoAppSource/Hybrid/EverliveSDK.Sample.Hybrid.zip
www.twitter.com
www.facebook.com

Contents

Required Knowledge 	 5

Creating an Icenium project	 5

Creating the first view	 5

Adding the application logic	 7

Creating your backend app in Everlive	 8

Initializing the Everlive SDK	 9

Adding login functionality	 10

The First ViewModel	 11

Binding the ViewModel	 12

Testing the app so far	 12

Creating a new content type for storing user activities	 13

The Activities view	 14

The Activities model	 14

Binding the Activities	 17

4Share this article! Back to Contents

www.twitter.com
www.facebook.com

2 HOURs
Approximate time to complete.

Required Knowledge:
A basic understanding of HTML and JavaScript will be helpful,
as well as a general understanding of Kendo UI’s Model View ViewModel (MVVM) framework.

We will take advantage of the Kendo UI MVVM framework by separating our app in Views,
ViewModels and Models. The advantages of this approach are not the focus of this tutorial; the
focus is simply on enabling you to quickly build a mobile app. There are two really good blog
posts explaining in detail how to best structure your code with the Kendo UI Mobile framework
and provide a general guide to MVVM for JavaScript developers. I recommend getting familiar with
these two valuable resources:

http://codingwithspike.wordpress.com/2012/11/30/making-a-well-structured-kendo-ui-mobile-app-
in-icenium-with-require-js/

http://addyosmani.com/blog/understanding-mvvm-a-guide-for-javascript-developers/

Creating an Icenium project
We start our app by creating a new Cross-Platform Device Application (Kendo UI Mobile) in Icenium.
This type of project is used because it provides a base project template containing all the resources
needed to build an application. The project comes with sample views in index.html and JavaScript
code in scripts/hello-world.js, but because we’ll write our own views and functionality, they can

safely be removed.

Creating the first view
A Kendo UI mobile application needs a Layout situated in the index.html file and at least one View
in the same file. Let’s open the index.html file and remove all the existing views, the content of the
layout and the script that initializes the Kendo UI application; it will be placed in a separate JavaScript
file. Also, go ahead and rename the layout to "default" by setting the "data-id" attribute. The body of
the HTML document should look like this:

Add a view named "welcome" and point it to the "default" layout:

 <body>

 <div data-role="layout" data-id="default">

 </div>

 </body>

<div data-role="view" id="welcome" data-layout="default">

</div>

5Share this article! Back to Contents

http://codingwithspike.wordpress.com/2012/11/30/making-a-well-structured-kendo-ui-mobile-app-in-icenium-with-require-js/
http://codingwithspike.wordpress.com/2012/11/30/making-a-well-structured-kendo-ui-mobile-app-in-icenium-with-require-js/
http://addyosmani.com/blog/understanding-mvvm-a-guide-for-javascript-developers/
http://docs.kendoui.com/api/mobile/layout
http://docs.kendoui.com/api/mobile/view
www.twitter.com
www.facebook.com

This view is the initial screen for our application and it needs a login form. It’s also nice to have a
title for this view. The file should look like this:

<!DOCTYPE html>

<html>

	 <head>

		 <title></title>

		 <meta charset="utf-8" />

		 <script src="cordova.js"></script>

		 <script src="kendo/js/jquery.min.js"></script>

		 <script src="kendo/js/kendo.mobile.min.js"></script>

		 <script src="http://maps.google.com/maps/api/js?sensor=true"></script>

		 <script src="scripts/hello-world.js"></script>

		 <link href="kendo/styles/kendo.mobile.all.min.css" rel="stylesheet" />

		 <link href="styles/main.css" rel="stylesheet" />

	 </head>

	 <body>

		 <div data-role="layout" data-id="default">

		 </div>

		 <div data-role="view" id="welcome" data-layout="default">

			 <h1>

				 everlive sample application

			 </h1>

			 <form id="login-form">

				 <ul data-role="listview" data-style="inset">

					

						 <label for="loginUsername">Username</label>

						 <input type="text" id="loginUsername" />

					

					

						 <label for="loginPassword">Password</label>

						 <input type="password" id="loginPassword" />

					

				

			 </form>

			 <div>

				 <a data-role="button">Login

			 </div>

		 </div>

	 </body>

</html>

6Share this article! Back to Contents

www.twitter.com
www.facebook.com

Adding the application logic
So far we’ve only used HTML. To make this a real application, however, some JavaScript code is
needed. By default the project comes with a scripts/hello-world.js file and a reference to it in the
index.html. We don’t need this file, so we’ll remove it along with its reference from the index.html.
Our script files will still be placed in the "scripts" folder but they will be divided by their role:

•	The files containing the necessary libraries, such as the Everlive SDK JavaScript file, will be in the
"lib" subfolder.

•	The files containing the application logic will be in the "app" subfolder.

In the "app" subfolder we’ll create a new file: main.js. In the "lib" subfolder, we will add a file
containing the Everlive JavaScript SDK: everlive.all.min.js. The SDK
file can be obtained by navigating to the Everlive backend and
opening the Downloads section. Click the "Hybrid & Web" tab
and then select the JavaScript SDK for hybrid mobile apps and
websites link. Unzip the downloaded file and look for everlive.all.
min.js in the "min" folder.

Don’t forget to add references to the JavaScript files in the index.html page like this:

We’ll write the application logic inside the main.js file. In order to keep from polluting the global
namespace, all the code is wrapped in an immediately-invoked function expression (IIFE) and a
single entry point is provided for our data and functionality through a global variable called "app":

Since the script that initializes the Kendo UI application was
removed from the index.html in the previous step we need to
add it back here:

Now if you click the "Run in simulator button" in Icenium, you will
see the "welcome" screen.

 <script src="scripts/lib/everlive.all.min.js"></script>

 <script src="scripts/app/main.js"></script>

var app = (function () {

 return {};

}());

var mobileApp = new kendo.mobile.Application(document.
body, { transition: 'slide', layout: 'default' });

7Share this article! Back to Contents

https://www.everlive.com/AllApps/ManageApp/DownloadSDK
https://www.everlive.com/Files/SDK/JavaScript/EverliveSDK.JS.zip
https://www.everlive.com/Files/SDK/JavaScript/EverliveSDK.JS.zip
www.twitter.com
www.facebook.com

Creating your backend app in Everlive
Our application will use the Icenium Everlive cloud
services to store its data. To create the backend for
the app, you can either navigate the Everlive Portal at
https://www.everlive.com in your browser, or open the
Data Navigator pane, right-click Everlive and click Open
Portal.

The backend defines the structure of your app in terms
of content types and fields. It also lets you explore and
manage the generated data from the mobile apps. In
Everlive, you can define the following custom fields: Text,
Number, DateTime,
Yes/No, File, GeoPoint, Single Relation, Multiple Relation,
and Array. Every app also comes with predefined content
types enabling you to store your Users, Roles and Files.

By default, you already have an existing Friends sample
that you can explore. For the purpose of this article,
however, we will go ahead and create a new Everlive app
that will serve as our backend.

Click on "New Project", and enter a name for your
backend app. Select "Start from scratch", and your
backend app will be created in seconds.

8Share this article! Back to Contents

https://www.everlive.com
www.twitter.com
www.facebook.com

Initializing the Everlive SDK
To connect your Icenium app to the backend services, you
have to obtain the API Key of your Everlive app and pass it
to the JavaScript SDK so it knows which app to connect to.
In order to initialize the Everlive SDK, you have to provide
an API key of an existing app in Everlive. Since we already
created our first app in Everlive, you can obtain its API Key
by navigating to the API Keys section of your app
within Everlive. →

Alternatively, you can obtain the API Key of an app
straight from Icenium. You can open the Data Navigator
in Icenium, right-click your app, and click Properties. The
Properties panel shows the API Key of your app as shown
on the right →

Add the following code in the main.js:

This code initializes the Everlive SDK and sets a reference
of it to the "el" variable. The SDK provides convenient ways
for querying the cloud data services. If you don’t keep a
reference you can still access the initialized SDK instance
through the Everlive.$ property.

var el = new Everlive('your API Key');

9Share this article! Back to Contents

www.twitter.com
www.facebook.com

Login functionality

Adding login functionality
Every Everlive app has a built-in Users content type which is used to store information about your
application’s users - like username, password, email, etc. We will use this Users type in our new login
functionality.

The "Login" button in the "welcome" view still doesn’t do any real work. It needs an event handler
that will gather the username and password of a user and send them to the cloud for authentication.
The following is the sample code for the event handler:

It is very simple. It takes the values of the input fields for username and password and sends them
to Everlive by calling "el.Users.login". The "el" variable is the reference to the SDK instance and has a
predefined property "Users" that provides basic CRUD operations as well some specialized functions
for authenticating, registering and logging out a user. You can find more information about the API
of the SDK on the Documentation page in the Everlive backend.

Notice that the "login" function is chained with the "then" function, which means that the "login"
function returns a promise because callbacks are not provided directly. The code that will be
executed when the request is over is defined by passing anonymous functions to the "then" method.
You can view this slide show for more information about the concept of promises in JavaScript. If the
login succeeds the app displays a popup saying "Authentication successful." If it fails, you will see a
popup with an error message.

IT IS VERY SIMPLE

 var login = function () {

 var username = $('#loginUsername').val();

 var password = $('#loginPassword').val();

 el.Users.login(username, password)

 .then(function () {

 alert('Authentication successful');

 },

 function (err) {

 alert (err.message);

 }

);

 };

10Share this article! Back to Contents

http://www.slideshare.net/domenicdenicola/callbacks-promises-and-coroutines-oh-my-the-evolution-of-asynchronicity-in-javascript
www.twitter.com
www.facebook.com

The First ViewModel
We need a way to expose that event handler to the views. It is a job for a ViewModel and we
need to create one. The ViewModel for the "welcome" view is an object that holds a reference to
the "login()" event handler. In the main.js file we declare a variable "loginViewModel" to hold the
ViewModel and expose it to the application via the "app" global variable:

The "app" variable contains the ViewModels as an associative list named "viewModels." It allows
accessing and binding to them in the views.

var app = (function () {

	 // ...

	 var loginViewModel = (function () {

		 var login = function () {

			 // ...

		 };

		 return {

			 login: login

		 };

	 }());

	 return {

 viewModels: {

 login: loginViewModel

 }

 };

}());

11Share this article! Back to Contents

www.twitter.com
www.facebook.com

Binding the ViewModel
The event handler is exposed and it needs to be invoked when someone clicks the "Login" button.
In Kendo UI, setting the "data-model" attribute of the view element connects views and ViewModels.
In the index.html file we add this attribute to the "welcome" view and set its value to "app.
viewModels.login":

A "data-bind" attribute is added to the "Login" button in order to attach the event handler to it:

The value of the "data-bind" attribute says that the "data-click" attribute should be added to the
element and its event should be the function specified by the "login" property of the ViewModel. It
happens to be our authentication function. The code above is equivalent to:

We’ll stick to the former way for resolving attributes values.

Testing the app so far
Click the "Run in simulator" button to see how the application looks. Since the application does not
have a signup screen we’ll create a new user by utilizing the backend of Everlive (if you really want
to have a signup screen before ending this post then check out the code of this sample hybrid
application). Open the "Data Navigator" tab, expand your app from the treeview, and right-click
on the Users type. From the menu select "Show Items." It will open the page with the data of the
"Users" content type. After it is opened you will see an empty grid with the ability to add a new user.

Click the "Add a user" button and create a new user, e.g. "John Doe." Now return to the window with
the Icenium simulator and type the username and password of the new user. If you click the "Login"
button and everything works as expected, you will see a popup saying "Authentication successful."
If there is no popup, then check the console of the simulator for any errors.

<div data-role="view" id="welcome" data-layout="default" data-model="app.viewModels.
login">

<a data-role="button" data-click="app.viewModels.login.login">Login

<a data-role="button" data-bind="{click: login}">Login

12Share this article! Back to Contents

https://www.everlive.com/Files/DemoAppSource/Hybrid/EverliveSDK.Sample.Hybrid.zip
https://www.everlive.com/Files/DemoAppSource/Hybrid/EverliveSDK.Sample.Hybrid.zip
www.twitter.com
www.facebook.com

User activities

Creating a new content type for
storing user activities
Let’s create a new content type called
"Activities" that will be used to store check-in
information by our users. The Activities content
type stores short user posts with a picture. It
has four fields: "Text" – the text of the post,
"Picture" – the id of the file that is used for
a picture, "UserId" – the id of the user that
created the activity, and "Location" –
a GeoPoint specifying the coordinates where
the activity took place. The Activities type also
contains system fields that are common for
every content type. Fields like CreatedAt,
which specify the date and time when an item
was created.

Open your app in Everlive, and click on "Create
a content type." A dialog for creating a new
content type in Everlive will open. Name your
new content type "Activities," and enter your 4
custom fields as shown on the right →

Open the content type you have created and
enter a couple of activities that we will retrieve
in our Icenium app.

13Share this article! Back to Contents

www.twitter.com
www.facebook.com

The Activities view
We will now add another view to our application that will consume our new Activities content
type we just defined in Everlive. We’ll place the markup of the new view in a separate html file
named "activitiesView.html" and put that file in a new folder "views." Kendo UI does not require
the view files to be valid HTML documents so we’ll add only the necessary elements to it:

In this view we have a header with a navigation bar and a title. We also have an unordered list
that will hold the contents of the activities.

The Activities model
The new view needs a ViewModel from which it can retrieve the list of activities. The ViewModel
in turn needs to know what the structure of the activities content type is. This is done by
creating a model for an activity. The ViewModel and the model will be placed in the main.js file
next to the login ViewModel. The model is defined first:

<div data-role="view" id="view-all-activities" data-layout="default">

	 <header data-role="header">

		 <div data-role="navbar">

			 Activities			

		 </div>

	 </header>

	 <ul id="activities-listview" data-style="inset" data-role="listview">

</div>

var activitiesModel = (function () {

 var activityModel = {

 id: 'Id',

 CreatedAtFormatted: function () {

 return AppHelper.formatDate(this.get('CreatedAt'));

 },

 User: function () {

 var userId = this.get('UserId');

 var user = $.grep(usersModel.users(), function (e) {

 return e.Id === userId;

 })[0];

 return user ? {

 DisplayName: user.DisplayName

 } : {

 DisplayName: 'Anonymous'

 };

14Share this article! Back to Contents

www.twitter.com
www.facebook.com

What’s interesting here is that the model is kept in a Kendo UI data source. Technically speaking,
the data source is more related to the ViewModel, but the data that the data source will retrieve
from the cloud may be used in more than one ViewModel. A Kendo UI widget like the ListView
works great with data sources and does not require additional plumbing.

The "activitiesDataSource" is configured to work with the Everlive REST services by setting "type:
'everlive'" option. It also needs the "schema.model" and "transport.typeName" options to be
defined in order to function properly. The "activityModel" that is used as a "model" for the data
source has two calculated fields: "CreatedAtFormatted" and "User." We’ll use these fields in the
activities view to display a more user friendly representation of the fields CreatedAt and UserId. You
might notice that the calculated fields use some objects which we haven’t yet defined: "AppHelper"
and "usersModel." "AppHelper" holds utility functions while the "usersModel" represents the Users
data. Here is the missing code:

 }

 };

 var activitiesDataSource = new kendo.data.DataSource({

 type: 'everlive',

 schema: {

 model: activityModel

 },

 transport: {

 // required by Everlive

 typeName: 'Activities'

 },

 sort: { field: 'CreatedAt', dir: 'desc' }

 });

 return {

 activities: activitiesDataSource

 };

 }());

 var AppHelper = {

 formatDate: function (dateString) {

 var date = new Date(dateString);

 var year = date.getFullYear().toString();

 var month = (date.getMonth() + 1).toString();

 var day = date.getDate().toString();

Kendo UI List View
NO ADDITIONAL PLUMBING

15Share this article! Back to Contents

http://docs.kendoui.com/api/mobile/listview
www.twitter.com
www.facebook.com

The data of users is kept in an ObservableArray so it can be bound easily to a view. It first
needs to be retrieved from the cloud by executing the "loadUsers" function. It can be done
after a user authenticates so they are authorized to see the other users in the app. She can be
redirected afterwards to the new view. We’ll change our "login" function to achieve
this functionality:

 return day + '.' + month + '.' + year;

 }

 };

 var usersModel = (function () {

 var usersData;

 var loadUsers = function () {

 return el.Users.get()

 .then(function (data) {

 usersData = new kendo.data.ObservableArray(data.result);

 })

 .then(null,

 function (err) {

 alert(err.message);

 }

);

 };

 return {

 load: loadUsers,

 users: function () {

 return usersData;

 }

 };

 }());

 var login = function () {

 var username = $('#loginUsername').val();

 var password = $('#loginPassword').val();

 el.Users.login(username, password)

 .then(function () {

 return usersModel.load();

 })

 .then(function () {

 mobileApp.navigate('views/activitiesView.html');

 })

 .then(null,

16Share this article! Back to Contents

www.twitter.com
www.facebook.com

The ViewModel for the Activities view will only expose the Activities model for now, so it is quite
simple:

We expose the activitiesViewModel with app.viewModels:

Binding the Activities
Now the activitiesViewModel can be bound to the activitiesView. We have already done the same
for the "welcome" view:

Next, the activities data source is bound to the ListView widget by using the same "data-bind"
attribute we used for the "Login" button. This time the "data-source" attribute of the ListView will be
evaluated:

 function (err) {

 alert(err.message);

 }

);

 };

var activitiesViewModel = (function () {

 return {

 activities: activitiesModel.activities

 };

 }());

return {

 viewModels: {

 login: loginViewModel,

 activities: activitiesViewModel

 }

 };

<div data-role="view" id="view-all-activities" data-layout="default" data-model="app.
viewModels.activities">

<ul id="activities-listview" data-style="inset" data-role="listview" data-
bind="source: activities" data-template="activityTemplate">

17Share this article! Back to Contents

www.twitter.com
www.facebook.com

The "data-template" attribute specifies the HTML that will be generated for each item in the data
source and the attribute value is the id of a script element containing the template. You can refer
to the Kendo UI demos for more information on templates and how they work. The following is the
template we’ll use for this ListView:

It shows the DisplayName of the user that posted the activity, the time the activity is created and the
text of the activity. That’s it! If you click "Run in simulator" you should be able to login with the user
we created earlier and see a list of predefined activities.

<script type="text/x-kendo-template" id="activityTemplate">

 <div>

 <div>

 <h2>${User().DisplayName}</h2>

 <time class="timeSpan">${CreatedAtFormatted()}</time>

 </div>

 <div>${Text}</div>

 </div>

</script>

That’s it!

18Share this article! Back to Contents

http://demos.kendoui.com/web/templates/index.html
http://demos.kendoui.com/web/templates/index.html
www.twitter.com
www.facebook.com

What’s Next?

What we’ve built is a small mobile app with two
screens. It lacks:

• Detailed views of our master view (the list with
activities).

• Screens for registering new users and adding
activities.

• CSS styling and images.

• A global error handler so that if an unexpected error
occurs, the app does not break. Every mobile app
built with the Kendo UI should have this global error
handler.

• A touch widget that supports tap events. Using the
click event in a mobile app is not very responsive.
Kendo UI provides a Touch widget that supports tap
events.

The complete app featuring all of the above
functionality is available in Icenium accessible by simply
creating a new project based on the Icenium Everlive
Cloud Services template. Your resulting new project will
feature a fully developed social app called Friends.

Also, be sure to check the comprehensive
documentation of the Everlive SDK by visiting the
Everlive backend of your application.

ABOUT THE
AUTHOR
Ivan Pelovski
Ivan Pelovski is a member of the
Everlive team. He is a developer
with experience in building
JavaScript and .NET applications.
He likes to have fun and learn
new things while he’s on his
quest to write perfect code.

ABOUT TELERIK
Telerik is a market-leading
provider of end-to-end solutions
for application development,
automated testing, agile project
management, reporting, and
content management. Telerik’s
award-winning software
development products enable
enterprises and organizations of
every size to generate tangible
productivity gains, reduce
time-to-market, and stay on
time and under budget. With
tens of thousands of users in
more than 90 countries around
the world, Telerik’s customers
include numerous Fortune
2000 companies, academic
institutions, governments, and
non-profit organizations.

19Share this article! Back to Contents

http://docs.kendoui.com/api/mobile/touch
www.telerik.com
www.twitter.com
www.facebook.com

