
©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.
©

 2
01

7
Pr

og
re

ss
. A

ll
R

ig
ht

s
R

es
er

ve
d.

WHITEPAPER

Preparing Your Toolbox
for the SharePoint
Framework
With Angular, Webpack and Kendo UI

Progress.com 2

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Table of Contents
Introduction / 4

Future of SharePoint Development / 4

Selecting our Web Stack and UI Library / 7

Building the App: Contract Register / 10

The App and the App Component / 13

The Contract List / 14

The Modal Service / 17

The Contract Form / 21

Validation / 24

PDF Generation / 26

The Contract Service / 27

PnP JavaScript Core Library / 28

Chaining Promises—Always be Making Promises / 30

Batching Requests, the Easy Way / 31

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/

Progress.com 3

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Building the App: Behind the Scenes / 33

Typings / 34

Gulp / 35

Webpack Bundling / 39

Getting Started / 46

Summary / 46

About the Authors / 47

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/

Progress.com 4

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Introduction
This whitepaper discusses the future of SharePoint
development and where Progress® Kendo UI® can
provide value in custom SharePoint application
development.

We want to follow the trails of a SharePoint
developer, where we’ve been (with Full Trust,
Sandbox, App/Add-In Web) and where we are
heading next with the open web stack. This was
an inevitable change that was happening with or
without Microsoft, based on all client projects that
we see and on talking with the community at large.

With the upcoming SharePoint Framework ("First
release this summer"), Microsoft is no longer
dictating our toolset, but embracing open web
technologies and wanting to support industry
trends as first class supported customizations within
SharePoint.

There is a lot to catch up on with the SharePoint
Framework so we better get started!

Our main goals for this whitepaper are to:

 • Get you excited about the new SharePoint
Framework and related web stack technologies.

 • Use a great set of web stack tools that work well
together to build a practical SharePoint business
application that can get you started with these
technologies today.

Future of
SharePoint
Development
The future of SharePoint development and
customization is the SharePoint Framework.

It is a client-side based framework that allows
JavaScript customizations to work on top of
SharePoint Online. It will also work with SharePoint
Server on-premises in a future update.

If you think SharePoint and Microsoft have been
standing still in the last few years—you might be
shocked. They have silently come a very long way!

The Framework and Why it’s Awesome

Firstly, it is a recognition that Microsoft should
adopt and build on top of progressive web
technologies. Instead of learning Microsoft’s version
of a technology that’s rapidly outdated, we can
use the latest and greatest in jQuery, KnockoutJS,
AngularJS or ReactJS—even mix and choose
technology based on our needs. These open web
technologies are all supported on SharePoint
Online.

We are no longer asked to learn strange object
models or peculiar syntaxes like CAML or
DisplayTemplates. Instead, we just need the
common, modern web technology stack to be

https://www.progress.com/
http://www.telerik.com/kendo-ui/ui-for-office-365-sharepoint?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16
https://blogs.office.com/2016/05/04/the-future-of-sharepoint/
https://blogs.office.com/2016/05/04/the-future-of-sharepoint/

Progress.com 5

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

effective and productive.

For businesses, this means we can train our developers
in skills that are useful even outside of SharePoint. It is
also far easier to hire web developers and have them
contribute to a SharePoint project quickly.

For traditional SharePoint developers, this means we
are required to familiarize ourselves with (yet again) a
new set of tools. This may be a big negative for some,
but we believe it to be a great opportunity. It will open
us up to a much broader world of web development
and at the same time open up SharePoint to a whole
world of web developers. Yes, we will have to step
up our game, but it is a small price to pay, compared
to the past when we had to hack around ancient,
unloved, SharePoint-specific technology.

Secondly, Microsoft promised that they will stop
"cheating" by creating backdoors for themselves.
This time, they are committed to only build on
top of this framework. Starting with the Office 365
Video Portal, the improved Delve Blogs and the new
Document Library experience are all the beginnings
of Microsoft’s own work building on top of the
SharePoint Framework. The upcoming new Team
Sites are the next step, along with several sneak
peeks of the publishing framework.

The Tools

The tools that Microsoft adopted for the SharePoint
Framework are best of breed tools from the web
world: Template and project generators from
Yeoman, build pipeline and tasks with Gulp and
project bundling with Webpack—distributed open

source on GitHub.

In addition, Microsoft is releasing a tool called the
SharePoint Workbench, which will allow us to run
and test our controls and applications within an
offline environment so we can work on our projects

https://www.progress.com/
https://blogs.office.com/2015/03/16/office-delve-discover-exactly-what-you-need-when-you-need-it/
https://blogs.office.com/2016/06/07/modern-document-libraries-in-sharepoint/
https://blogs.office.com/2016/06/07/modern-document-libraries-in-sharepoint/

Progress.com 6

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

and run automated tests when we are not connected
to SharePoint Online.

Open Source

All these framework, libraries and new tools are
released Open Source. We can now take a copy of
the code, improve it and create a pull request to
submit back to the community.

There are also several community projects spinning
up around the official releases, adding capabilities,
libraries and components available to our toolkit.
Most recently, the release of the PnP-JS-Core library
provides a new wrapper around the modern REST
API that should help developers transition into client
side development for the SharePoint Framework.

Not too long ago, SharePoint developers using open
source libraries like SPServices to build their web
parts and application were somewhat considered
cowboys. Today, developers are being encouraged
to use them as best practice.

Jeff Teper and the Focus on Modern and
Mobile

One big exciting development on the roadmap was
the return of Jeff Teper, the father of SharePoint,
back to lead SharePoint efforts within Microsoft.

The team had zeroed in on several key updates to
SharePoint.

While the backend of SharePoint Online and
On-Premises continues to update forward in an
evergreen way, new experiences modernize the
SharePoint experience.

All modern browsers are supported as first class.

And all the new experiences are designed to be
responsive and rescale accordingly to the UI—
whether it is desktop or mobile, across all platforms.

This matches very well with developments in the
web world, with technologies like Cordova allowing
web applications to run within native applications,
the SharePoint Mobile App was born.

It promises a smooth interface, caching and seamless
connection to Office Client Apps, OneDrive and the
new Team Site experience.

The Mobile App also had the promise that
customizations on top of the SharePoint Framework
will run within the Mobile App. This icing on the cake
may yet prove to be the biggest selling factor to
businesses. If we come to Microsoft for this ride and
develop the "new way," we get the experience across
all mobile devices—free.

Timeframe

The SharePoint Framework (SPFx) was in private
preview, and through the writing of this whitepaper
has gone into developer preview and released to the public.

https://www.progress.com/
https://github.com/OfficeDev/PnP-JS-Core

Progress.com 7

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Update: Developer Preview (August 2016)

The Developer Preview, our first taste and our
feedback to Microsoft, is in two areas. Firstly,
Microsoft’s own guidance doesn’t cover Angular yet.
We believe this to be crucial before public release as
a majority of full client-side applications developed in
the last few years are using the Angular framework.

Secondly, SPFx build Gulp tasks and Webpack
configurations are hidden from the user. This
hides some of the ‘magic’ but also makes the build
process difficult to customize for different teams. For
example, if we want to add more tasks to the build
pipeline, we want to integrate a different testing
framework or even deploy the solution to existing
SharePoint 2013 On-Premises—the current Gulp
tasks hides that.

But we are expecting public release to happen very
soon this year. And we hope to work with Microsoft
to address some of these issues.

Selecting Our
Web Stack and UI
Library
Ready, Set, Go! Onward to the SharePoint
Framework

So, you are all set and excited about the SharePoint
Framework. You are looking to customize Office
365. You want to bring your customizations down to
SharePoint Mobile. You want to build apps that will

run within SharePoint, or even in Office Add-Ins.

There are a multitude of scenarios that have taken
us to this point. The next step is to evaluate the
components and technologies that are available to
us and pick the ones that we will focus on.

Next, we will discuss web technologies that we
believe align well with the direction in the open
web stack. We present this technology set as a
good solution that works really well, but keep in
mind many more technologies, e.g. KnockoutJS or
ReactJS will also work fine. You should evaluate this
suggested list and make adjustments accordingly,
relating to your team’s situation.

Technologies

Node, NPM—In the JavaScript world, Node is the
runtime that lets us run code without a browser.
The modern web stack runs on JavaScript—script
running in Node on the server and script running in
browser on the client.

NPM is like nuget for getting libraries and tools that
we need to run tools as well as libraries for the web
application. Historically, Bower was used for client-side
JavaScript libraries—technologies such as Webpack
module bundling means that there is no longer a real
distinction between what is a client-side library or
what is just a JavaScript library. If it’s needed on the
client side, the bundler will pack it for us.

AngularJS—Framework that helps us manage
databinding, components and composition. This is
one of the most popular web frameworks that likely
doesn’t need any introduction. Many companies have

https://www.progress.com/

Progress.com 8

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

already invested skills and code to this framework.

For this project, we pick Angular over React because
of our own experiences, having used Angular in
client projects in the past and the readily available
UI frameworks like Kendo UI that are optimized for
Angular.

Yeoman—‘The web’s scaffolding tool for modern
webapps’ is one of the most exciting pieces to the
SharePoint Framework puzzle. Before, we were
dependant on Visual Studio Wizards to create the
new SharePoint project. Now, we can generate the
web project using the Yeoman generator running on
node.js from the command prompt.

Microsoft currently has an ongoing very successful
Yeoman template for creating Office Add-ins
called generator-office (yo office). The SharePoint
Framework generator will be called generator-
sharepoint (yo sharepoint).

Although we are highly anticipating the SharePoint
template, you won’t be restricted to it. You can make
your own adaptations and templates and share them
within your development team or with the entire
community.

For our project, we will use the PnP JSCore Yeoman
Template also released by Microsoft to get started.

Gulp—Task runner, build, test, deploy to SharePoint.
Traditionally, Gulp takes a more active role in minifying
and concatenating files before deployment. That task
has largely been taken over by Webpack. Gulp remains
useful in our stack because it is still more flexible as a
task runner to connect different tasks, and ultimately,
manage the deploy tasks to SharePoint.

Webpack—It’s one of the most interesting pieces
of the modern web stack that appeared in the last

year and is rapidly gaining momentum. At its core,
its unique philosophy is to utilize parallel code
splitting to load JavaScript quickly into the browser.
And it is designed to not only minify and uglify
JavaScript, but also able to generate source-maps
and run a development Webpack server that could
recompile on the fly. Webpack is fairly opinionated
about how things should work, but has taken over
much of the functionality that used to depend on
several different tools—Browserify, Gulp and require/
systemjs. In the SharePoint Framework, Webpack will
be one of the pieces used to package our resources
both to run in a local development server, or for
deployment to a CDN to be used in SharePoint itself.

Visual Studio Code—We choose to use Visual
Studio Code, as it’s a much simpler code editor.
VS Code doesn’t try to be a fully Integrated
Development Environment (IDE) with full SDKs and
wizards. Instead, it tries to be a good code editor
that understands files grouped in folders really well.

Where does Kendo UI fit in and what are the
Alternatives?

If we are building business applications, we are
probably building forms and we need great controls
with out-of-the-box validation capabilities. Basic
controls like textbox, text area and date pickers are a
given. As we consider additional controls like grid view,
rich text editing and multi-lingual support for global

https://www.progress.com/
https://github.com/OfficeDev/generator-office
https://blogs.msdn.microsoft.com/patrickrodgers/2016/06/10/pnp-jscore-yeoman-template/
https://blogs.msdn.microsoft.com/patrickrodgers/2016/06/10/pnp-jscore-yeoman-template/
https://code.visualstudio.com/Docs/languages/javascript
https://code.visualstudio.com/Docs/languages/javascript

Progress.com 9

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

customers, using a UI framework is a no brainer.

A Grasp of What’s Out There and Our
Experience with it:

 • UI Bootstrap—is well tested and used with
Angular, but not particularly optimized for
SharePoint or Office 365. You may have some
growing pains as you adjust CSS and loading
orders to get UI Bootstrap to work nicely.
Bootstrap’s Responsive CSS doesn’t work with
SharePoint MasterPage out of box, so you will
need to tinker with that. When single page
applications (SPAs) are supported properly with
SharePoint Framework, this may change.

 • Office UI Fabric Core, Components and
ngOfficeUIFabric—Office UI Fabric is a set of
styles and components provided and used by
Microsoft to build their own customizations.
The focus is Office 365 friendly CSS, and
components designed for plain JavaScript
or React. As Microsoft doesn’t provide an
Angular implementation, ngOfficeUIFabric is a
community attempt to create native wrappers for
Office UI Fabric components, but along with the
components themselves they are not yet widely
adopted and you may find support difficult to
come by. UI Fabric Core is mainly supported for
SharePoint Online, Office Add-Ins and latest
versions of SharePoint 2013/2016.

 • Kendo UI comes in three plans—Core,
Professional and Complete, where Complete
goes beyond the scope of this project as it
includes additional libraries such as wrappers
for MVC, JSP and PHP. Kendo UI Core is free,
open source and community-supported.

Kendo UI Professional is next step with 70+
advanced controls (grid, spreadsheet, Gantt
and scheduler being our recent favorites). While
Kendo UI Pro isn’t open source, we do get access
to dedicated support and full source code to
review so we can still take a crack at a particular
problem by reading the source code ourselves.
It’s the best of both worlds.

Kendo UI controls support jQuery, Angular 1.x and
Angular.

React support is coming soon.

All these libraries will work with any SharePoint and
Angular projects and you don’t have to use Kendo
UI. Our example does, but it can be replaced with
ngOfficeUIFabric.

There are plenty of things to learn and get going
in the new framework—spending time on making a
control work is probably less important in the grand
scheme of things.

 “I have some first-hand experiences here

[at a client] customizing both UI-Bootstrap

and ngOfficeUIFabric on several client

projects. Halfway through each project I’m

thinking, maybe I should have just gone for

a commercial supported framework and not

spend all this time making controls work.”

https://www.progress.com/
http://www.telerik.com/kendo-ui/ui-for-office-365-sharepoint?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16
http://www.telerik.com/kendo-ui/comparison?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16
http://www.telerik.com/purchase/kendo-ui?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16
http://www.telerik.com/kendo-angular-ui/?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16
http://www.telerik.com/blogs/kendo-ui-for-react-in-2017?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16

Progress.com 10

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Building the App: Contract
Register

We want to demonstrate how the technologies
discussed in the previous section work together and
build a simple yet useful application: The Contract
Register.

Use Case

When a government department shares information
with a third party, which is not covered by any
other legal agreement, they require the information
receiving party to sign a contract.

A ‘System Access Agreement’ describes a code of
conduct for external parties to access any of the
department’s information systems and the general
terms of usage.

On a functional level, the application should:

• Show a list of all contracts and status (the
register)

• Allow for adding, editing and viewing contracts
• Signed contracts should be uploaded and stored

within the register

High Level

What are we building? Below is a high-level diagram
of the components. Each component isn’t a lot
of code as we aim to show a simple, but working
system and how each component interacts.

https://www.progress.com/

Progress.com 11

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Group Artefacts by Function—Not by Type

In many starter examples of Angular projects, the
SPA is grouped by type of the object. Whether it is
a View, Model or Controller—they are often lumped
and grouped in separate directories. You see a
component like DataService fairly regularly as the
only component to talk to the backend.

What many people later find out is that while that
sort of grouping makes a good simple starter
project or learning demo, it is actually not a great
way to keep related functions together. When you
are working on the controller for a contract-list, you
probably want the contract-list view template right
next to it.

Files organized by function, with views next to their
controllers.

See Todd Motto’s Angular Style guide for in-depth
examples: https://github.com/toddmotto/angular-
styleguide

https://www.progress.com/
https://github.com/toddmotto/angular-styleguide
https://github.com/toddmotto/angular-styleguide

Progress.com 12

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

var app = angular

 .module(‘app’, [‘kendo.directives’, ‘kendo.window’]);

app.service(‘contractService’, ContractService);

app.component(‘app’, App);

app.component(‘contractList’, ContractList);

app.component(‘contractForm’, ContractForm);

The base HTML page that we bind to is SPApp.
html which is generated from sp-app.ejs file via the
Webpack HtmlWebpackPlugin. We discuss this in a
later section. The HTML is similar to index.html.

<div ng-app="app">

 <app>Loading...</app>

</div>

This is where we bootstrap our Angular application
and load the root App component.

Entry – index.js

Every application has a starting point. Ours is
index.js. Here we defined our Angular single page
application, ‘app’. It has dependency on Kendo UI
Angular Directives. It has four parts—a contract
service where we will talk to the backend system (in
this case, SharePoint), a contract list, a contract form
and the top level ‘app component’ which is the root
component that contains everything inside.

https://www.progress.com/

Progress.com 13

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The App and the App Component

The App component is loaded in the default page
replacing the <app> element.

Here we see a simple example of Angular 1.5’s new
components syntax, combining best practices of
directives with isolated scopes and controllerAs
$ctrl by default, forward looking towards a web-
components future in Angular 2.0.

<contract-list></contract-list>

module.exports = {

 template: require(‘./App.html’),

 controller: App

};

function App() {

 // App is just a top level component

}

A component in Angular can reference either
templateUrl. We then need to pass the template as a
URL or preload it into the Angular Template Cache.
With the template option, we then need to specify
inline HTML string.

Webpack excels at loading and packing HTML as
string into a single JavaScript file. So one of the early
choices we end up with is to rely on Webpack to do
templating, and essentially do away with Angular
Template Cache.

Note: Should you still want to use Angular Template
Cache, there is a Webpack ng-cache loader that will
take template files and preload them so they are still
available via the templateUrl property.

We use template string consistently through the
project.

https://www.progress.com/

Progress.com 14

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The Contract List

Our first interesting component is a list of the
contracts we want to show in the application.
The template will look extremely simple.

Kendo UI controls follow a more traditional way
where we bind the data to a Kendo UI DataSource
object first. The data source object tracks paging,
filters and grouping, and feeds that information to
one or more controls on the page (e.g. a Grid and a
Pager).

<h1>Contract Register</h1>

<kendo-grid options="$ctrl.gridOptions"></kendo-grid>

Note that we wanted to use the Kendo UI Grid
control for some fairly sophisticated functions.
The Kendo UI Grid control is part of the Kendo UI
Professional pack. A simpler example we started with
uses the Kendo ListView control, which is part of
the Kendo UI Core pack, and works very well for list
rendering.

https://www.progress.com/
http://www.telerik.com/kendo-ui/grid?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16
http://demos.telerik.com/kendo-ui/listview/index?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16

Progress.com 15

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Angular 1.5 Controller

module.exports = {

 template: require(‘./contractList.html’),

 controller: ContractListController

};

 ContractListController.$inject = [‘$scope’, ‘$element’, ‘$attrs’, ‘contractService’,

‘$kWindow’];

function ContractListController($scope, $element, $attrs, contractService, $kWindow) {

 var $ctrl = this;

 $ctrl.source = null;

 $ctrl.openFormWindow = openFormWindow;

 $ctrl.refresh = refresh;

 $ctrl.newContract = newContract;

 activate();

 ...

}

The ControllerList is written with readability in mind.
We follow several best practices from Todd Motto’s
excellent Angular Style Guide. We list controller
members near the top, and initialize them with
activate() method.

In Angular 1.5, the controllerAs is on by default, and
the default name is "$ctrl" so we reflect that in the

code to keep the code simple. (Previously before 1.5,
we used vm from our MVVM background).

Because Webpack will take care of bundling and
uglification of the parameters, use $inject header to
tell Angular which arguments need to be provided
by dependency injection.

https://www.progress.com/
https://github.com/toddmotto/angular-styleguide#components

Progress.com 16

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The Controller activate()

 function activate() {

 $ctrl.source = new kendo.data.DataSource({

 data: [],

 schema: {

 model: {

 fields: {

 ...

 }

 }

 }

 });

 $ctrl.gridOptions = {

 dataSource: $ctrl.source,

 sortable: true,

 filterable: true,

 groupable: true,

 columns: [

 ...

],

 toolbar: [

 {

 name: "add",

 text: "New Contract",

 template: ‘<a ng-click="$ctrl.newContract()" class="k-button k-button-icontext

k-grid-add" href="\\#">New Contract’

 }]

 };

 $ctrl.refresh();

 }

We set up the Kendo UI data source.

We set up grid options for the Kendo Grid
component.

And finally, we call refresh on the list. Refresh is a
method we will come back to later. It is exposed as a
public method on the controller.

https://www.progress.com/

Progress.com 17

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The Controller refresh()

 function refresh() {

 contractService.getItems().then(function (items) {

 $ctrl.source.data(items);

 });

 }

The refresh method asks the contract-service to
get a list of items then bind that list to Kendo UI
DataSource’s data member.

Kendo UI’s datasource is an observable array, and it
will work with Angular to correctly refresh the grid
list.

The Modal Service

When we click on a form we want to bring up, the
form in a modal dialog, the Angular way.

https://www.progress.com/

Progress.com 18

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Control Approach: Bootstrap’s $modal, Office
UI Fabric UIF-Dialog, Kendo UI Kendo-Window

All component libraries for a pop up window
(dialog) have simple syntax designed for opening an
individual dialog. This pattern is useful for scenarios
to create dialogs to ask for confirmation, or to bring
up a terms and conditions when a user visits an
intranet site.

The control-based approach is not a suitable
pattern when you want to bind different views and
controllers to different items in a set of items.

The control approach also usually does not support
multiple stacks of window dialogs. So we couldn’t
pop up a window dialog and have that window
dialog pop up yet another confirmation dialog in a
well-supported way.

Factory Approach: SharePoint SP.UI.
ModalDialog, UI Bootstrap $modal, $kWindow

Both the UI Bootstrap library and Kendo UI have
implementation and examples for a factory-based
approach. Incidentally, even SharePoint’s own SP.UI.
ModalDialog works like a service and lets us create
dialog windows and stack them.

Here is a method to open a contract form
component within a popped up dialog window.

https://www.progress.com/

Progress.com 19

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

 function openFormWindow(dataItem) {

 // http://plnkr.co/edit/PjQdBUq0akXP2fn5sYZs?p=preview

 var windowInstance = $kWindow.open({

 options: {

 modal: true,

 title: dataItem.Title,

 resizable: true,

 visible: false

 },

 template: ‘<contract-form contractid="$ctrl.contractid"

$close="$close(result)" $dismiss="$dismiss(reason)"></contract-form>’,

 controller: [‘contractid’, function (contractid) {

 var $ctrl = this;

 $ctrl.contractid = contractid;

 }],

 controllerAs: ‘$ctrl’,

 resolve: {

 contractid: function () {

 return dataItem.Id;

 }

 }

 });

 windowInstance.result.then(function (result) {

 if (result) {

 $scope.result = ‘confirmed!’;

 $ctrl.refresh();

 }

 else {

 $scope.result = ‘canceled!’;

 }

 });

 }

https://www.progress.com/

Progress.com 20

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The $kWindow service lets us open a window, and
at the same time bind an Angular template and a
controller to this template. The service also attaches
$close and $dismiss methods to the controller for
the form. So the child component can control when
it is ready to be closed.

Angular’s template binding kicks in and allows the
contract-form component to be rendered within the
popped up modal dialog.

Finally, the service returns an instance that has
a result promise that can be used by the parent
controller to watch for the result of the opened
dialog window.

More information is available on https://angular-ui.
github.io/bootstrap/#/modal.

Kendo UI window-service is available here and the
code itself is on GitHub.

One specific implementation note—because our
project utilizes Webpack bundling, we do not have
the template ‘window.html’ which is needed by
angular-kendo-window service. Instead, we bundle
the content of window.html via a template string in
our implementation.

kwin.directive(‘kWindowFrame’, [‘$kModalStack’, ‘$q’, ‘$animate’, ‘$injector’,

 function ($modalStack, $q, $animate, $injector) {

 ... snipped

 return {

 scope: {

 index: ‘@’

 },

 replace: true,

 transclude: true,

 template: ‘<div kendo-window="myKendoWindow" k-options="options" modal-

render="{{$isRendered}}" tabindex="-1" role="dialog" > <div><div k-window-

transclude></div></div> </div>’,

 /*

 templateUrl: function (tElement, tAttrs) {

 var windowInstance = $modalStack.getTop().value;

 return windowInstance.windowTemplateUrl || ‘window.html’;

 },

 */

 ... snipped

 };

 }])

https://www.progress.com/
https://angular-ui.github.io/bootstrap/#/modal
https://angular-ui.github.io/bootstrap/#/modal
http://docs.telerik.com/kendo-ui/AngularJS/how-to/window-service?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16
https://github.com/kjartanvalur/angular-kendo-window/blob/master/angular-kendo-window.js

Progress.com 21

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The Contract Form

The Contract Form is our third component in the
application. It is in many ways similar to the contract
list component. Because it is loaded in a dialog
window, it also has unique bindings to the dialog
window’s $close and $dismiss methods.

 activate();

 function activate() {

 //ID is known get item refresh

 if($ctrl.contractid){

 contractService.getItem($ctrl.contractid).then(function (item) {

 $ctrl.item = item;

 });

 }

 }

module.exports = {

 template: require(‘./contractForm.html’),

 controller: ContractFormController,

 bindings: {

 ‘$close’: ‘&’,

 ‘$dismiss’: ‘&’,

 ‘contractid’: ‘<’

 }

};

The contractid is a property provided by the
contract list when the contract form is opened.
The contract form’s activate method requests
the contract from the contract-service.

https://www.progress.com/

Progress.com 22

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The contract is set to the controller’s item property. This is then bound to the template for contract form.

<fieldset>

 <legend>Contract Details</legend>

 <p class="forms">

 <label>Contract Type</label>

 <select kendo-drop-down-list style="width: 100%;" ng-model="$ctrl.item.Title">

 <option value="SAA" selected>System Access Agreement</option>

 <option value="NDA">Non Disclosure Agreement</option>

 </select>

 </p>

 <p>

 <label>System Name</label>

 <input type="text" class="k-textbox" ng-model="$ctrl.item.SystemName" required />

 </p>

 <p>

 <label>Give a detailed description of the system </label>

 <textarea ng-model="$ctrl.item.InformationDescription" required></textarea>

 </p>

 <p>

 <label>End Date</label>

 <input kendo-date-picker ng-model="$ctrl.item.ContractEndDate" required />

 </p>

</fieldset>

https://www.progress.com/

Progress.com 23

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Kendo UI controls here can be bound simply to the model on the controller.

<p>

 <button kendo-button type="submit" ng-click="$ctrl.save()">Save</button>

 <button kendo-button type="button" ng-click="$ctrl.dismiss()">Cancel</button>

</p>

 function save() {

 ... snip

 //ID is known update item

 if ($ctrl.contractid) {

 contractService.updateItem($ctrl.item).then(function (item) {

 $ctrl.close();

 });

 }

 else {

 //no ID add as new item

 contractService.newItem($ctrl.item).then(function (item) {

 $ctrl.close();

 });

 }

 }

 function close() {

 $ctrl.$close({

 result: ‘save’

 });

 }

 function dismiss() {
 $ctrl.$dismiss({
 reason: ‘cancel’
 });
 }

https://www.progress.com/

Progress.com 24

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The buttons at the bottom of the form can also be
bound to methods on the controller. When invoked,
they call the contract-service to update or create
new contract item. When that’s successful, they
call the $close or $dismiss methods on the dialog
window to close down the dialog, disposing the form
component.

If we don’t want to have save() close the modal
window, then we need to take the saved item object
from the resolved promise and assign it back to $ctrl.

item. This lets the UX bind to the latest version of
the object, and if we are using calculated fields in
SharePoint, this is necessary to bring back the server
updates during the save.

Validation

We bind any validation messages to the bottom of
the form. Kendo UI validation is very simple to set
up.

https://www.progress.com/

Progress.com 25

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

<form kendo-validator="$ctrl.validator" ng-submit="$ctrl.validate($event)">

 <fieldset>

 <legend>Contract Details</legend>

 <p>

 <label>System Name</label>

 <input type="text" class="k-textbox" ng-model="$ctrl.item.SystemName"

required />

 </p>

 <p>

 <label>Start Date</label>

 <input kendo-date-picker ng-model="$ctrl.item.ContractStartDate" required

/>

 </p>

 </fieldset>

 <p>

 {{ $ctrl.validationMessage }}

 </p>

</form>

 function validate(event) {

 //block submit from making a postback

 event.preventDefault();

 if ($ctrl.validator.validate()) {

 $ctrl.validationMessage = "";

 $ctrl.validationClass = "valid";

 } else {

 $ctrl.validationMessage = "There is invalid data in the form.";

 $ctrl.validationClass = "invalid";

 }

 }

Fields that are required, add a required attribute. Specify a kendo-validator in the form, and attach validate
method to the submit event of the form. (This is triggered by the save button, which is a type="submit").

https://www.progress.com/

Progress.com 26

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

To be fair, UI-Bootstrap also has similar validation capabilities. Office UI Fabric components does not currently
have validation, but it is on the roadmap in the future.

 function save() {

 if (!$ctrl.validator.validate()) {

 $ctrl.validationMessage = "There is invalid data in the form.";

 $ctrl.validationClass = "invalid";

 return;

 }

 //ID is known update item

 if ($ctrl.contractid) {

 contractService.updateItem($ctrl.item).then(function (item) {

 $ctrl.close();

 });

 }

 else {

 //no ID add as new item

 contractService.newItem($ctrl.item).then(function (item) {

 $ctrl.close();

 });

 }

 }

Update contract-form’s save() method—it should check and make sure the form is valid.

PDF Generation

The application uses Kendo UI to save DOM to PDF.

https://www.progress.com/
http://demos.telerik.com/kendo-ui/pdf-export/index?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16

Progress.com 27

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

function generatePdf(selector) {

 kendo.drawing.drawDOM($(selector)).then(function (group) {

 kendo.drawing.pdf.saveAs(group, "contract.pdf");

 });

}

When the Generate Contract is clicked, the click
event calls a Kendo function to generate the current
DOM into PDF for download.

An alternative scenario may be to write the PDF
binary directly to SharePoint’s document library.

The Contract Service

The contract service is injected by most of the
application components and exposes the methods
for talking to the SharePoint list backend.

ContractListController.$inject = [‘$scope’,

‘$element’, ‘$attrs’, ‘contractService’,

‘$kWindow’];

In our example project, we also have the contract
service provisioning the Contract Register List and

fields. You may consider moving this into a separate
application component (handling configuration)
altogether.

The contract services use the methods provided by
the PnP SharePoint JavaScript library to perform
actions in SharePoint using simple and clean looking
code.

https://www.progress.com/

Progress.com 28

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

contractService.js

module.exports = ContractService;

var pnp = require(‘sp-pnp-js’);

//added here and as webpack external to prevent compile warnings

var _spPageContextInfo = require(‘_spPageContextInfo’);

//Use angular promises

ContractService.$inject = [‘$q’];

function ContractService($q) {

 var self = this;

 self.getItems = getItems;

 self.newItem = newItem;

 self.getItem = getItem;

 self.updateItem = updateItem;

 function getItems() {

 return $q(function (resolve, reject) {

 ...

}

PnP JavaScript Core Library

What is this library? Currently, it contains a fluent
API for working with the full SharePoint REST API
as well as utility and helper functions. This takes the
guess work out of creating REST requests, letting
developers focus on the what and less on the how.
(Source: PnP JS Core Wiki)

Even though using the library simplifies working

SharePoint REST API, developers still need to know
how to complete basic operations with the REST
endpoints to take advantage of all the options
available.

Together with the PnP JS Core API documentation,
performing list operation in SharePoint has never
been this easy.

https://www.progress.com/
https://github.com/OfficeDev/PnP-js-core/wiki
https://msdn.microsoft.com/en-us/library/office/jj164022.aspx
http://officedev.github.io/PnP-JS-Core/index.html

Progress.com 29

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Let’s compare creating a SharePoint list through a
‘normal’ jQuery (ajax) SharePoint REST API call vs
the PnP JS Core Library:

Using jQuery, the web request would look something
like this:

jQuery.ajax({

 url: "http://<site url>/_api/web/lists",

 type: "POST",

 data: JSON.stringify({

 ‘__metadata’: { ‘type’: ‘SP.List’ },

 ‘Title’: ‘My List Title’,

 ‘Description’: ‘My list description’,

 ‘BaseTemplate’: 100,

 ‘AllowContentTypes’: false,

 ‘EnableVersioning’: true,

 }),

 headers: {

 "accept": "application/json;odata=verbose",

 "content-type": "application/json;odata=verbose",

 ...

}).then(..

Making this same list configuration call through the PnPJSCore add method would look like:

var additionalSettings = { EnableVersioning: true }

pnp.sp.web.lists.add(‘My List Title’, ‘My list description’, 100, false, additionalSettings).

then(..

As you can see this PnP example is much leaner and
readable. The add method parameters allow us to
specify the required properties to create the list with
one line of JavaScript.

Additional settings like ‘EnableVersioning’ can be
passed in as an object of key value pairs and will

be added to the list creation request body. For
finding all additional settings, we would still rely on
documentation available around the SharePoint
REST API like the available list properties.

https://www.progress.com/
http://officedev.github.io/PnP-JS-Core/classes/_sharepoint_rest_items_.items.html#add
https://msdn.microsoft.com/en-us/library/office/dn531433.aspx#bk_ListProperties

Progress.com 30

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Chaining Promises—Always Be Making
Promises

Continuing to look at our contract service code, it
will probably not come as a surprise that all methods
return promises and often chaining promises within.

Where possible, we use Angular promises ($q), we
use $q() as a promise constructor and return it
directly without creating a deferred object first.

The PnP JS Core library uses ES6 Promises and
requires a polyfill for Internet Explorer to work.

function getItems() {

 return $q(function(resolve,reject){

 getList().then(function (list) {

 list.items.get().then(function (items) {

 resolve(items);

 });

 }).catch(reject);

 });

}

function getList() {

 return $q(function (resolve, reject) {

 pnp.sp.web.lists.ensure(‘ContractRegister’, ‘’).then(function (result) {

 if (result.created) {

 setupContractRegister(result.list).then(function (list) {

 resolve(list);

 });

 } else {

 resolve(result.list);

 }

 });

 }).catch(reject);;

}

https://www.progress.com/

Progress.com 31

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

All of the contract service methods: getItems(),
newItem(), getItem(), updateItem() use the getList()
method to get the contract register list instance first.

The getList() method uses the ensure() method to
detect whether the register list already exists, and if
not creates it right away. Note: the ensure methods
do not update the list settings if the list already
exists.

The Lists.ensure() method is a wrapper around the
Lists.getByTitle() method, and when fails, catches
the error and calls Lists.add(). This event will be
logged to the console like:

The ensure method returns a promise that once
completed resolves an object containing the list
instance and the list creation data.

In the contract service when the list is created we
call the setupContractRegister() method only once.

Any consecutive call of the ensure method will
effectively be the same as calling the getByTitle ()
method directly.

Batching Requests, the Easy Way

Although batching has been available through the
SharePoint Online REST API for some time, making
batching request work was a fairly complicated task.
Batching was added in the PnPJSCore 1.0.2 release,
the announcement has some great examples for
batching (as well as caching). It is important to note
that batching is not supported on SharePoint 2013
On-premise as of yet.

Even though the PnPJSCore library makes batching
very easy, it is recommended to have a read of
Andrew Connell’s excellent series, SharePoint REST
API Batching—Understanding Batching Requests, to
understand the inner workings.

https://www.progress.com/
http://officedev.github.io/PnP-JS-Core/classes/_sharepoint_rest_lists_.lists.html
All of the contract service methods: getItems(), newItem(), getItem(), updateItem() use the getList() method to get the contract register list instance first. The getList() method uses the ensure() method to detect whether the register list already exists, and if not creates it right away. Note: the ensure methods do not update the list settings if the list already exists. The Lists.ensure() method is a wrapper around the Lists.getByTitle() method, and when fails, catches the error and calls Lists.add(). This event will be logged to the console like:
http://officedev.github.io/PnP-JS-Core/classes/_sharepoint_rest_lists_.lists.html
https://blogs.msdn.microsoft.com/patrickrodgers/2016/06/28/pnp-jscore-1-0-2/
http://www.andrewconnell.com/blog/part-1-sharepoint-rest-api-batching-understanding-batching-requests
http://www.andrewconnell.com/blog/part-1-sharepoint-rest-api-batching-understanding-batching-requests

Progress.com 32

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

In our contract service, we use batching to provision the list fields for the contract register.

function setupContractRegister(list) {

 return $q(function (resolve, reject) {

 // create batch

 var batch1 = pnp.sp.createBatch();

 $q.all([

 //Information System Details fields

 list.fields.inBatch(batch1).addText(‘SystemName’),

 list.fields.inBatch(batch1).addMultilineText(‘InformationDescription’, 8, false),

 list.fields.inBatch(batch1).addNumber(‘InformationSensitivity’),

 ...

]).then(function () {

 // add some demo entries

 $q.all([

 list.items.add({‘Title’: ‘SAA-001’, ‘ThirdPartyContactFullName’: ... }),

 list.items.add({‘Title’: ‘SAA-002’, ‘ThirdPartyContactFullName’: ... }),

 list.items.add({‘Title’: ‘SAA-003’, ‘ThirdPartyContactFullName’: ... })

]).then(function () {

 resolve(list);

 });

 });

 batch1.execute();

 });

 }

As explained in the version 1.0.2 announcement, the
same applies here. The key thing is we can keep
chaining our promises or add them to an array of
$q.all([…]) promises and they won’t be resolved
until the batch execute command is called.

We can almost write the same code as before and
just add in the inBatch() method to the chain and

get the benefits of REST batching. When we want
to add the list fields without batching, (for example
to make this work on-premises) we would need to
chain them one after the other. Calling them in parallel
(array of promises) will return conflict errors as list
configuration can’t be changed by multiple requests
at the same time.

https://www.progress.com/

Progress.com 33

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

This is different for list items as they can be added
simultaneously as the above method demonstrates.
This does however result in three separate http
requests, where if we would have used batching
there would have only been one.

Building the
App: Behind the
Scenes
There’s always two sides to a great meal—there
is the recipe and there are the tools that do the
cooking. AngularJS, Kendo UI and PnP JS Core work
well to create the application. And then we look
to the build side—which tools do we use to really
improve the build experience.

“You might not be cooking in the SharePoint

Dev Kitchen, but that really doesn’t stop you

from watching and learning how to use the

same tools to cook at home.”

https://www.progress.com/
https://blog.mastykarz.nl/sharepoint-dev-kitchen/
https://blog.mastykarz.nl/sharepoint-dev-kitchen/

Progress.com 34

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Typings

Intellisense is for Everyone, Not Just
TypeScript

With Visual Studio Code, detailed intellisense can be
enabled for both TypeScript and JavaScript projects.
In a TypeScript project, the settings would be stored
in a tsconfig.json file. For a plain JavaScript project,
we need to add a jsconfig.json file.

The default jsconfig.json file essentially tells Visual
Studio Code what EMCAScript level we are running,
and which directories to ignore parsing (node_
modules) as that would make the editor unbearably
slow.

https://code.visualstudio.com/docs/languages/
javascript#_javascript-projects-jsconfigjson

The typings module with the configurations in
typings.json helps the project track the latest Type
definition files available for modules within the
JavaScript project. Visual Studio Code is then able
to use the TypeScript definition files to provide code
intellisense service.

Typings have more benefits in a TypeScript project
as TypeScript encourages developers to strongly
type their code, and the intellisense service is more
intelligent. But even in a plain old javascript project,
Typings is useful and gives better information than
VS Code is able to guess.

We utilize PnP JS Core to talk to SharePoint. It is built
with typings definitions, which makes intellisense
fairly robust.

https://www.progress.com/
https://code.visualstudio.com/docs/languages/javascript#_javascript-projects-jsconfigjson
https://code.visualstudio.com/docs/languages/javascript#_javascript-projects-jsconfigjson

Progress.com 35

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Gulp

Gulp is our chosen build system—a Gulp script is
JavaScript script. It makes it easier to specify how we
want to chain our operations or sometimes dive into
a few simple functions. Various sets of our tools work
with Gulp as Gulp extensions.

The entire build process runs on Gulp tasks, these
are defined in gulpfile.js

gulp.task("build", ["lint", "webpack:build"]);

gulp.task("lint", () => {

 return gulp.src("./src/**/*.js")

 .pipe(eslint())

 .pipe(eslint.format());

});

gulp.task("webpack:build", function(callback) {

 // run webpack

 webpack(config, function(err, stats) {

 if(err) throw new gutil.PluginError("webpack:build", err);

 gutil.log("[webpack:build]", stats.toString({

 colors: true

 }));

 callback();

 });

});

Traditionally, Gulp would be used to trans-compile,
minify, concatenate and uglify JavaScript files, but it
relies on other modules to do this, and Webpack has
taken over most of the responsibility.

Visual Studio Code understands Gulp and will
happily run the Gulp tasks that we define.

https://www.progress.com/

Progress.com 36

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

We can also type ‘task ‘ to bring up a list of other Gulp tasks that can be run from Visual Studio Code.

https://www.progress.com/

Progress.com 37

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

gulp-eslint - eslint Checks the JavaScript

Particularly, we are looking for areas where a variable
might be undefined. This is an extremely common
issue where perhaps we’ve used the wrong casing,
or we had renamed the variable, but had leftovers,
or—and everyone’s guilty of this—we’ve copied code
from the Internet (or from another function) and
haven’t gone through and renamed everything.

Another error that eslint can pick up is when we’ve
had mismatched brackets or braces. Usually, an
advanced editor like VS Code will pick this up, but
eslint will double check it for us.

There are some best-practice rules, such as no-alert,
where it will warn us if we’ve left alert() calls for
testing behind and it’ll end up in production.

On style issues, we are lenient on issues related to
linebreak characters, tabs and spaces. But on larger
teams this may be dictated to avoid edit wars and
huge merge nightmares.

Take particularly single or double quotes—we lean
on using double quotes for all strings, as the JSON
specification explicitly says only double-quotes can
be used for member definitions.

We integrate eslint within Gulp as a lint task, running
the extension gulp-eslint

Within Visual Studio Code, an extension is available
for eslint so we can get syntax checking while we
work on each file.

gulp-spsave

To really simplify getting our result files into
SharePoint, a few Gulp tools have been built. The
most common are gulp-spsync and gulp-spsave.

Gulp-spsync is designed for SharePoint Online, but
has been forked to gulp-spsync-withcred that lets us
use it for both Online and On-Premises.

Gulp-spsave is designed for both Online and On-
Premises. The configuration options for both tools
are similar and they work similarly. Gulp-spsave has
a slight edge on the number of options as well as a
rewritten stack in gulp-spsave that uses sp-request
module; it copies files faster.

https://www.progress.com/

Progress.com 38

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

We started our tools on gulp-spsync, then to gulp-
spsync-withcred so we can have one tool for both
Online and On-Premises deployments. Finally, we
moved over to gulp-spsave because it had more
options and runs faster.

var gulp = require("gulp"),

 gutil = require("gulp-util"),

 o365 = require("./o365-user.js"),

 spsave = require(‘gulp-spsave’);

gulp.task("deploy", ["webpack:build"], function(){

 return gulp.src(‘./dist/SiteAssets/**/*’)

 .pipe(spsave({

 "username": o365.username,

 "password": o365.password,

 "siteUrl": o365.site,

 "folder": ‘SiteAssets’

 }));

});

gulp-spsync SPO https://github.com/wictorwilen/gulp-spsync
gulp-spsave SPO, On-Premises, *fast* https://github.com/s-KaiNet/gulp-spsave

gulp-spsync-cred SPO, On-Premises https://github.com/estruyf/gulp-spsync-creds

robocopy Require mapped drive

https://www.progress.com/
https://github.com/wictorwilen/gulp-spsync
https://github.com/s-KaiNet/gulp-spsave
https://github.com/estruyf/gulp-spsync-creds

Progress.com 39

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Webpack Bundling

Running Webpack in Development Mode

In development, our solution is to use jQuery,
Angular and Kendo UI (JavaScript and CSS) as

<link rel="stylesheet" href="https://kendo.cdn.telerik.com/2016.2.714/styles/kendo.common-

office365.min.css" />

<link rel="stylesheet" href=" https://kendo.cdn.telerik.com/2016.2.714/styles/kendo.office365.min.

css" />

<script src="https://kendo.cdn.telerik.com/2016.2.714/js/jquery.min.js"></script>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.5.8/angular.min.js"></script>

<script src="https://kendo.cdn.telerik.com/2016.2.714/js/kendo.all.min.js"></script>

<script src="../SiteAssets/vendor.js"></script>

<script src="../SiteAssets/app.js"></script>

<div ng-app="app">

 <app>Loading...</app>

</div>

Additionally, we upload local fallback versions in case
the CDN is unavailable.
http://docs.telerik.com/kendo-ui/intro/installation/
cdn-service

This means that Webpack is packaging only a
vendor.js file for some remaining libraries we use, as
well as the app.js containing all the application code
that we wrote, along with the source map files for
these.

external modules. In this configuration, the SPApp.
html is generated and points to reference vendor
libraries in a CDN.

The files are pushed to SharePoint.

https://www.progress.com/
http://docs.telerik.com/kendo-ui/intro/installation/cdn-service
http://docs.telerik.com/kendo-ui/intro/installation/cdn-service

Progress.com 40

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Now, the HTML page can’t run directly in SharePoint
Online. SharePoint Online will actually not serve
HTML pages; it will attempt to download them to
the computer.

Instead, the HTML can be included into a blank
page and run via the Content Editor webpart.

https://www.progress.com/

Progress.com 41

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

This is a one-time setup so we didn’t include this in
the Gulp scripts.

In the future, with the SharePoint Framework, we
expect there will be a Gulp task that will deploy
artefacts to SharePoint as well as register them
with SharePoint APIs. We expect there will be small

changes in this area as SharePoint Framework is
released.

If we look at the network tab in the browser’s F12
Development Mode, we can see a clearer picture of
where the files are being loaded from.

The Kendo UI CSS, jQuery, Angular and Kendo JS
files are loaded from CDN. Then a single vendor.js is
loaded (this is where we packed additional vendor
libraries into a single file) along with our app.js file—
it is packed to only 17kb.

Webpack packs everything into modules—a highly
unreadable mess, as one would expect.

https://www.progress.com/

Progress.com 42

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

But a quick Pretty-Print will help make more sense of it.

Here – module 6 looks like our contract service.

And if we toggle the Source Map option in our browser debugger:

We are now able to set break points and debug our JavaScript even though it is minified in
SharePoint.

https://www.progress.com/

Progress.com 43

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Note: We can map the correct lines and set breakpoints, but remember that local variables have been
renamed to simple "e", "t" variable names. While we may be expecting "items", it is actually "e" that we should
be looking for.

Running Watch Mode

The gulp-spsave documentation already gives an example of how to use a Gulp task to monitor file changes
and upload them automatically to SharePoint. This will save us from manually having to run the build/deploy
task again. Since we use Webpack to bundle our files, we combine webpack’s watch mode with the gulp-
watch plugin to upload changes.

gulp.task("webpack:build-dev-watch", function () {

 //set webpack watch

 var devWatchConfig = Object.create(devConfig);

 devWatchConfig.watch = true;

 // run webpack

 webpack(devWatchConfig, function (err, stats) {

 if (err) throw new gutil.PluginError("webpack:build-dev-watch", err);

 gutil.log("[webpack:build-dev-watch]", stats.toString({

 colors: true

 }));

 });
});

gulp.task("deploy-watch", ["webpack:build-dev-watch"], function () {

 //need awaitWritefinish to prevent uploading twice

https://github.com/paulmillr/chokidar#api

 watch(‘./dist/SiteAssets/**/*’, { awaitWriteFinish: true })

 .pipe(spsave(spSaveConfig));

});

The ‘webpack:build-dev-watch’ tasks sets ‘watch
= true’ in the Webpack config. In addition, the dev
build doesn’t minify and uglify the JavaScript, which
speeds up the compile time and gives a better

debugging experience. The disadvantage here is
that the output file sizes will be larger, so depending
on the size and upload speed, we may want to use a
minified/uglified build and rely on the source map.

https://www.progress.com/

Progress.com 44

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

In watch mode (and caching enabled) Webpack
keeps each module in memory and only recompiles
changed output files. Since all our source files are
bundled in the app.js file, any change to, for example,
index.js or contractservice.js will trigger Webpack to
generate a new app.js, but it won’t touch vendor.js or
app.css files (if nothing has changed in the related
files of course).

The Gulp file watcher monitors the "/dist/SiteAssets/"
folder for new changes that are then uploaded by
spsave every time Webpack rebuilds them.

Calling the ‘deploy-watch’ task will build all the
output files once, upload them and after that only
upload changes.

Running Webpack in Memory—the Webpack
Dev Server

Webpack has a webpack-dev-server mode that will
run and serve Webpack assets directly. What this can
let us do is instead of injecting the app.js and vendor.
js into the HTML page and upload it to SharePoint,
we can inject localhost references to app.js and
vendor.js, and have that uploaded to SharePoint.

Locally, the browser will connect the scripts served
from webpack-dev-server with other scripts from
SharePoint Online.

Webpack automatically watches the source directory
we are working in, so if we update and save any
of our work, Webpack will automatically rebuild
the bundled modules and serve them all from
memory, without need to write to file, then upload
to SharePoint. This gives us extremely fast testing
cycles.

Webpack-dev-server has an automatic refresh
option with --inline mode, so when Webpack detects
a change within the source code, it will even trigger
the SharePoint page to refresh.

In the SharePoint Framework, Microsoft talks of a
SharePoint Workbench tool that will allow us to test
our customizations ‘offline.’ We expect the webpack-
dev-server to be a related part of this offline story.

https://www.progress.com/
https://webpack.github.io/docs/webpack-dev-server.html
https://webpack.github.io/docs/webpack-dev-server.html

Progress.com 45

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Running Webpack Dev Server with Hot
Module Replacement

The ultimate craziness in the Webpack world is hot
module replacement. Because Webpack loads each
dependency as a separate module, it is able to watch
for changes to individual modules and replace them
at runtime.

As we make a change in our file, Webpack rebuilds
the package and then replaces the module that’s
currently loaded in our webpage with the new code.

Because our HTML and CSS assets are also loaded
into script by Webpack, it can change the template
that’s used to generate and bind HTML in the
application too.

All this can happen without us having to refresh the
browser; this allows JavaScript current scope to be
maintained as the code is switched out.

Running Webpack for Production

For production, Webpack excels at packaging and
removing modules from bundles that we aren’t
actually using. For both Angular, ngOfficeUIFabric
and Kendo UI, as these libraries are built from
components, Webpack bundling can actually detect
which modules we are actually using within our code
and will strip out modules that aren’t used by us.

For example, if we aren’t using Kendo UI ListView
control it doesn’t get bundled in the vendor.js file,
making a custom vendor file that’s a lot smaller.

In practice, we find the bundling more difficult to
work with when we are testing or debugging issues
with the controls. So while this is an exciting option,
it should be reserved only for production code.

https://www.progress.com/
https://webpack.github.io/docs/hot-module-replacement.html
https://webpack.github.io/docs/hot-module-replacement.html
https://www.npmjs.com/package/kendo-ui-webpack?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-kendo-office365-may16

Progress.com 46

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Getting Started
How to run the Contract-Register demo

1. You will need to have NodeJS installed
2. Fork from https://github.com/johnnliu/

contract-register or download as Zip
3. In a Node command-line, go to the contract-

register directory and run
 » > npm install
 » This installs all the defined packages within
the package.json file

4. Run Gulp tasks
 » > gulp build
 » This will build the project

5. Deploy to your SharePoint
 » Update o365-user.js with your account
details and site url

 » > gulp deploy
 » This will build and deploy the JavaScript to
your SharePoint site’s SiteAssets document
library.

6. One-off
 » Create a page with a Content Editor
webpart, and point it to the SiteAssets/
SPApp.html file.

Summary
In summary, we built a modern Angular application
with components using the latest work in PnP
JS Core. We built and pack the source code with
Webpack, and deploy it to SharePoint with Gulp.

We discuss our choices and describe what makes
this set of tools work together so well, as well as
potential pitfalls and gotchas one might need to be
aware of.

Conclusion
These are the most exciting times as a developer,
especially for a SharePoint developer. There are
many new tools for modern web technology, and all
of them are applicable to us to work in SharePoint
On-Premises and SharePoint Online.

The new tools and web stack work well together, but
there is no pressure to have to learn everything at
once. We are learning, and sharing our learnings. We
see new pieces and we try to figure out where they
fit. We hope you will take what we’ve learned and run
further with it and be successful.

https://www.progress.com/
https://nodejs.org/en/
https://github.com/johnnliu/contract-register
https://github.com/johnnliu/contract-register

Progress.com 47

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

About the authors

Bart Bouwhuis

Bart is a senior SharePoint Consultant at SharePoint
Gurus and has focused on client side development
since MOSS 2007.

He has implemented various tailored solutions for
managing training, projects, assets and contracts
within SharePoint and currently uses Kendo UI for
the majority of his projects.

SharePoint Gurus

SharePoint Gurus is an award-winning consultancy
based in Sydney. We specialize in improving
productivity through configuring and developing
Microsoft SharePoint technologies.

At SharePoint Gurus, we help companies understand
what SharePoint is (and often isn’t). Using our deep
knowledge of the product and our years of practical
experience, we will help you plan, configure and
implement the right size solution on SharePoint On-
Premises or SharePoint Online (Office 365).

Our goal is to provide unparalleled consulting
services. Our specialist knowledge will speed up
your deployment of SharePoint by helping you
understand how it can be effectively implemented to
achieve your business goals.

https://www.progress.com/
https://sharepointgurus.net/

Progress.com 48

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

John Liu

John is a Senior Consultant based in Sydney
for SharePoint Gurus. He specializes and blogs
frequently on client-side scripting, custom
development, workflows and Forms.

Originally from a technical background in ASP.
NET, he made the jump to focus and work with
numerous SharePoint projects since WSS. John loves
to find ways to bring the latest ASP.NET and web
technologies to the SharePoint world, applying the
latest web developments to extend SharePoint’s
capabilities.

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for
developing and deploying mission-critical business applications.
Progress empowers enterprises and ISVs to build and deliver
cognitive-first applications, that harness big data to derive
business insights and competitive advantage. Progress offers
leading technologies for easily building powerful user interfaces
across any type of device, a reliable, scalable and secure backend
platform to deploy modern applications, leading data connectivity
to all sources, and award-winning predictive analytics that brings
the power of machine learning to any organization. Over 1700
independent software vendors, 80,000 enterprise customers, and
2 million developers rely on Progress to power their applications.
Learn about Progress at www.progress.com or +1-800-477-6473.

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw

 twitter.com/progresssw
 youtube.com/progresssw

For regional international office locations and contact
information, please go to
www.progress.com/worldwide

Progress is trademark or registered trademark of Progress Software Corporation and/or one of its subsidiaries or affiliates in the

U.S. and/or other countries. Any other trademarks contained herein are the property of their respective owners.

© 2016 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. Rev 16/09 | 160325-0050

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/

