
Web Forms, MVC, Web API, and SignalR:
How Can I Choose Just One?

ONE ASP.NET-
A STRATEGY
FOR HAPPINESS

3 4

2
1

http://www.telerik.com/
http://www.telerik.com/whitepapers/aspnet-mvc?utm_medium=pdf&utm_source=telerik&utm_campaign=dt-asset-ungating

CONTENTS

Why You Should Consider a Hybrid-Project Approach 3

Don’t Be Tempted to Exclusively Use the Latest and Greatest 4

Advantages and Disadvantages of the Hybrid Project 10

Hybrid ASP.NET. Application Construction in Visual Studio 2013 11

Summary 14

Jeffrey T. Fritz is a Microsoft MVP

in ASP.NET, an ASPInsider and

Developer Evangelist for Telerik

with over 15 years of experience

building large-scale multi-tenant web

applications in the software-as-a-

service model. A Penn State graduate

with a degree in Management

About the Author

Sciences and Information Systems, he

speaks regularly at developer events

through the INETA speaker program

and maintains blogs at www.

csharpfritz.com and blogs.telerik.

com/jefffritz. You can find him on

Twitter at @csharpfritz and can

reach him at jeff.fritz@telerik.com.

http://blogs.telerik.com/jefffritz
http://blogs.telerik.com/jefffritz
https://twitter.com/csharpfritz
mailto:jeff.fritz%40telerik.com?subject=

WHY YOU SHOULD CONSIDER A
HYBRID-PROJECT APPROACH

The web has evolved at an amazing pace.
Nothing in history has grown and changed
as rapidly as today’s technology. Every
day there are new inventions and new
techniques, quickly pushing aside the older
generation in favor of the new and shiny.
ASP.NET is no different, with the addition of
MVC, WebPages, WebAPI, SignalR, and SPA
frameworks. Each one of these frameworks
added something new and fresh to the
landscape of ASP.NET. With each addition,
millions of software developers everywhere
asked themselves the question: Do I
re-write my website to use “technology x”?

This document will outline the reasons
your organization should consider a hybrid-
project approach. We will demonstrate
specific instructions for embracing this
project architecture with Visual Studio 2012
and will conclude with some statements
about Visual Studio 2013 and ASP.NET 4.5.1.

A publication of 3

http://www.telerik.com/

When I was a child, both of my parents drove cars
to work: my father drove a simple hatchback and
my mother drove a sedan. After working hard for
many years, my dad came home one day in a shiny
new Corvette. He still had his little hatchback, but
I distinctly remember asking, “Dad! This is the
coolest car! But why didn’t you get rid of your old
one?” “No no…”, he said, “this is just a car for fun…
I’m not going to drive it everywhere. But I’m a fan of
sports cars, and I finally decided it was time to get
something that would be fun to drive every now
and again.”

Similarly, don’t look at the various ASP.NET
frameworks as your everyday tool to build
everything. Each of these frameworks is a tool you
can use judiciously in various parts of a website to
deliver the best capabilities and content, in various
patterns benefitting different needs differently. You
don’t need to drive your father’s sports car every
day to the office. Some days, you need something
better suited to drive through snow and rain—and
that shiny Corvette won’t do.

Starting in 2005, I participated in writing an
application with millions of lines of code using
ASP.NET 1.1. We had hundreds of webpages and
controls. When ASP.NET MVC was released in
2009, we examined it and determined that it made
sense to use in the next module we would build
in our application. It would be JavaScript intense,
have massive amounts of business logic and would
benefit greatly from unit tests. You can likewise
make this decision, and add MVC to an existing
web forms project as the need arises.

Remember, the cost to rewrite an application is
significant. Every dime spent towards technical
and human resources throughout the course of
application construction will be lost when the
rewritten application is released. Why then are you
rewriting the application? Do you need to rewrite
everything in the application? Is there some shiny
new framework an eager software developer wants
to use that is “incompatible” with your current
application’s source code? These are all questions
that project stakeholders should be asking
themselves when faced with this scenario.

Fortunately, ASP.NET is not built with a one-
size fits all mentality. Microsoft has given us a
significant set of tools in this technology that nicely
complement each other. You NEVER need to scrap
an entire application to use the next available
ASP.NET technology.

Don’t Be Tempted to Exclusively Use the Latest and Greatest

A publication of 4

http://www.telerik.com/

In the early days of ASP.NET, the only framework
available to developers was ASP.NET Web Forms.
Every page, no matter how simple or static, needed
to be constructed with an ASPX file that would
have ViewState, PostBacks, and a full event life-
cycle. When used improperly, these features in a
web form can consume significant memory and
processor resources.

Forward thinking developers, who want to shorten
their development processes and encourage
better design patterns in their applications, would
build their own frameworks on top of the web
forms architecture. The creation of FubuMVC
and MonoRail are two examples of frameworks
built by the community that make use of the Web
Forms framework.

In 2009 when Microsoft released ASP.NET MVC,
there was a collective rush from developers to

Add More Tools to Your Tool Belt: One Tool Does Not
Solve All Problems

explore a new framework. This rush lead many
developers to think that they needed to completely
abandon the “old” ASP.NET and build projects
from scratch in order to make use of the new MVC
framework. Further, developers started to use MVC
for every project, claiming it was the most efficient
use of their resources. This is symptomatic of the
“Golden Hammer” anti-pattern.

This anti-pattern suggests a magical tool
that can be used to solve every programming
challenge. Project stakeholders should want their
development teams to have the broadest set of
capabilities available to them. Not every challenge
is the same, and each needs to be addressed in its
own way.

A publication of 5

http://www.telerik.com/

FIGURE 1 - THE ASP.NET 4.5 FRAMEWORK FIGURE 2 - THE FOUR QUADRANTS OF ASP.NET FRAMEWORKS

Each of these frameworks has significant features
to assist your project construction. Choose the right
framework to make your job easier.

The four major components of ASP.NET have the
following significant features:

•	Web Forms: An event-based programming model
that delivers web content using an abstracted
object model for web pages.

•	MVC: An opinionated programming model
that requires developers to use the Model-
View-Controller architecture to deliver content.
Developers have full control over all content
delivered from a web server.

•	WebAPI: A framework for controlling and
managing RESTful based services that fully
embrace the HTTP protocol and make full use
of its features. Makes use of a similar controller
architecture in use by MVC.

•	SignalR: A framework to deliver “real-time”
interactivity with attached clients using modern

web communication protocols. The web server
has the ability to call and execute code on each
and any of the attached clients.

The three green frameworks are client-side intense,
as there are significant capabilities that need to
be written to consume the resources exposed on
the server-side. Web Forms abstracts away that
requirement, and generates appropriate content for
a browser and is designed to perform all logic on
server-side.

In the next sections, we will walk through how to
combine each of the frameworks in one project in
Visual Studio 2012 and 2013.

Our toolset has been extended by Microsoft to
include five server-side frameworks in ASP.NET:

Web
Forms

HttpHandlers +
HttpModules

OWIN

Web
Pages

Web Server

Web
API

SignalRMVC

User Interface Construction

Event Driven
Development

Prescribed
Architecture

Machine - to - Machine Communications

Web
Forms

MVC

SignalR
Web
API

A publication of 6

http://www.telerik.com/

In the early days of ASP.NET MVC, it was very
difficult to use Web Forms and MVC in one project.
There were configuration changes required in web.
config and DLLs that needed to be placed correctly,
along with a series of folders that needed to be
constructed by hand. With the advent of NuGet
and Visual Studio 2012, this framework integration
has become significantly simpler. In the next few
sections, you will learn how to add each framework
to an existing project of a different type.

Adding Web Forms to MVC
This is the simplest of the projects to manage. With
an existing MVC application, all of the modules and
handlers are already in place to handle web forms
content. You simply need to add a new web form
and get started programming.

You can maintain the look and feel of the MVC
URLs that don’t have extensions by implementing
FriendlyUrls. Simply add the Microsoft.ASP.NET.
FriendlyUrls NuGet package to your project and
add the following line to your RouteConfig:

routes.EnableFriendlyUrls();

COMBINING FRAMEWORKS IN
VISUAL STUDIO 2012
HOW TO USE THE TOOLS TOGETHER

A publication of 7

http://www.telerik.com/

We lead from the simplest hybrid project to the
most complex. Adding MVC to Web Forms has
been made significantly easier thanks to NuGet.

1. Add the Microsoft.ASP.NET.Mvc package to
your project

2. Update App_Start\RouteConfig.cs to include
information to route the MVC urls:

a. Note: the default controller listed here is the

same as the MVC default. You should change

this to whatever controller is the appropriate

default in your application.

3. Add Folders for the Models, Views, and
Controllers in your project

4. Add a web.config file to your Views folder to
protect it from users browsing your source
code. This file can be copied directly from
the default MVC project template on your
Visual Studio install at:

C:\Program Files (x86)\Microsoft
Visual Studio 11.0\Common7\IDE\
ProjectTemplates\CSharp\Web\1033\
MvcWebApplicationProjectTemplatev
4.1.cshtml\Views

5. <optional> To activate the native Visual
Studio tooling support, such as the “Add
Controller” or “Add View” dialogs, a small edit
needs to be made to the csproj file for your
project.

a. Right click your web project name

in the Solution Explorer and choose

“Unload Project”

b. Right click your web project again, and

choose “Edit MyProject.csproj” or whatever

your project name is.

c. In the XML source of the project file, add the

following GUID to the front of the Project/

PropertyGroup/ProjectTypeGuids element:

{E3E379DF-F4C6-4180-9B81-6769533ABE47};

d. This element should now look like

the following:

<ProjectTypeGuids>{E3E379DF-F4C6-4180-
9B81-6769533ABE47};{349c5851-65df-11da-
9384-00065b846f21};{fae04ec0-301f-11d3-
bf4b-00c04f79efbc}</ProjectTypeGuids>

e. Close the project source file, right-click on the

project name in the Solution Explorer and

choose “Reload Project” You should now be

able to right-click on the Controllers folder

and choose “Add Controller”

 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 // Existing from Web Forms project
 routes.EnableFriendlyUrls();

 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index", id =
UrlParameter.Optional }
);

Adding MVC to a Web Forms Project

A publication of 8

http://www.telerik.com/

Adding WebAPI to a Web Forms
Project
WebAPI is available as a standalone project
template, under the list of templates available
when starting an MVC project type. However, it
is trivial to add WebAPI capabilities to an existing
Web Forms project.

1. Right-click on a folder and choose “Add –
Web API Controller Class” and Visual Studio
will include the necessary libraries to get
started with WebAPI

2. Add App_Start\WebApiConfig.cs to
manage routes for your API controllers. The
original WebApiConfig for WebAPI can be
copied from:

C:\Program Files (x86)\Microsoft
Visual Studio 11.0\Common7\IDE\
ProjectTemplates\CSharp\Web\1033\
WebApiApplicationProjectTemplatev
4.1.cshtml\App_Start

3. In Global.asax.cs register the WebAPI
configuration before RouteConfig is
managed in Application_Start:

protected void Application_Start()
{
 WebApiConfig.Register(GlobalConfiguration.Configuration);
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
}

Adding SignalR to an Existing
Web Forms or MVC Project
This process is very similar in structure to adding
WebAPI to web forms and is the same for both web
forms and MVC project types.

1. Right-click on a folder in your project and
choose “Add – SignalR Hub Class” and
Visual Studio will add the appropriate NuGet
packages to your project.

2. Add routing for the SignalR extension with
the following line in your

App_Start\RouteConfig.cs file:

a. routes.MapHubs();

You should now be able to start communicating
with SignalR hubs on the server.

Adding WebAPI to an Existing
MVC Project
Fortunately, this hybrid-project type is just as
easy as adding web forms to MVC. The WebAPI
extensions are already present and configured in
an MVC 4 project, and the only step necessary is to
start adding Web API controllers to the project.

A publication of 9

http://www.telerik.com/

With your web project in this state, you can begin
to take significant advantage of the mash-up
frameworks. Consider what you can now achieve
with this project structure:

•	Use a Web Form to host Web Controls that
simplify graphing or some other complex UI
presentation in an MVC project.

•	Use MVC to generate and manage
lightweight markup and data presentation in a
Web Forms application

•	Add an API to a web project for other devices or
client applications to communicate.

•	Build out a browser-side single-page-application

Once you start combining these technologies,
there are some challenges that come along with
the architecture:

•	Requested Url routing confusion: For example: A
browser requested the page /Product/Search. Is
that a web form using FriendlyUrls or is that an
MVC or WebAPI endpoint?

•	Re-writing of shared assets: User Controls written
for Web Forms cannot be used as part of a view
with an MVC controller. MVC Views cannot be
parsed and consumed by Web Forms.

•	Testability is challenged: Web Forms is notoriously
untestable with unit tests. When combined with
an MVC project, the problem has not gone away.

ADVANTAGES OF THE HYBRID PROJECT

DISADVANTAGES OF THE HYBRID
PROJECT

framework that only fetches and submits data
through an API

•	Add real-time updates to your existing
web-based dashboards

•	Perform long-running operations on the web
server and be notified asynchronously once they
have completed

•	Transparently share static assets such as
JavaScript and CSS between project components

A publication of 10

http://www.telerik.com/

FIGURE 2 - THE FOUR QUADRANTS OF ASP.NET FRAMEWORKS

HYBRID ASP.NET APPLICATION
CONSTRUCTION IN VISUAL STUDIO
2013
With the release of Visual Studio 2013 and Microsoft
.Net 4.5.1, we see the unification of this fragmented
ASP.NET environment and the delivery of a single
ASP.NET project model.

A publication of 11

http://www.telerik.com/

To facilitate the maintenance of projects in the
legacy model, Microsoft has kept those older
project types around. In Visual Studio 2013, under
Web, the Visual Studio 2012 element will allow
you to choose a project type from those historical
project types:

However, once you begin a project with the new
ASP.NET Web Application type, you will be led
through a series of dialogue windows to assist you
in the initial configuration of your application.

FIGURE 4 - LEGACY
PROJECTTYPE AVAILABILITY
IN VISUAL STUDIO 2013

FIGURE 5 - INITIAL
CONFIGURATION SCREEN
FOR A NEW ASP.NET
PROJECT

A publication of 12

http://www.telerik.com/

There are several project templates in this initial
screen, similar to the project template screen
we have in MVC Projects today. Each one of the
templates has a description on the right detailing
what it is optimally configured for, and a default
set of configuration options underneath. You are
not restricted from adding Web Forms to an MVC
project, or adding MVC to a Web Forms project.

FIGURE 6 - AUTHENTICATION CONFIGURATION DIALOGUE

Additionally, you have the option to generate a unit
test project, just as there are previously in the MVC
project template dialogue.

The next option, a new element to the ASP.
NET configuration wizards, is the ability to
Configure Authentication.

In Visual Studio 2013 there are three options
available to the developer:

•	No Authentication – very self-explanatory

•	Individual User Accounts – allows users to
register and manage their username and
password credentials

•	Windows Authentication – uses the integrated
Windows Authentication services available
through either local or Active Directory
domain accounts

This dialogue offers me some hope for the future.
I can see this being extended to include options
to configure OAuth or other third-party security
services providers. After struggling with the

configuration of OAuth and other services in the
past, I am very happy to see that authentication
configuration is being handled in a clear way.

After clicking “Ok” on this screen, and the “Create
Project” button on the prior dialogue, our project
is created with all of the extensions and libraries
added appropriately. All of the NuGet packages
and configuration files are properly updated in
our project to enable the various programming
frameworks to interoperate seamlessly.

A publication of 13

http://www.telerik.com/

This is the vision of One ASP.NET – reduce
the complexity and confusion of multiple
child frameworks. You should never be
forced to use a framework that you don’t
want to or one that isn’t as efficient or
productive as you need to be. ASP.NET will
no longer be a pizza that you have ordered
and someone dreads because you wanted
extra mushrooms on it and they don’t.
ASP.NET is now a buffet – choose what you
like, take as little or as much as you want.
Don’t get married to a single architecture
for everything, and don’t use the same tool
for every project. If you’re going to be using
Visual Studio 2012 in the near future, then

SUMMARY
take advantage of the simple steps outlined
above to take advantage of these hybrid
project capabilities. If you have already
upgraded to Visual Studio 2013, enjoy this
evolution of ASP.NET. This change is very
exciting, and it’s a part of an evolution that
will help us write simpler, more efficient
code that enables us to deliver excellent
solutions in less time than we can today.

With over 150 UI controls and thousands
of scenarios covered out-of-the-box, you
can leave the complexities of UI to us and
focus on the business logic of your apps.

This content is sponsored by
Telerik UI for ASP.NET AJAX
and
Telerik UI for ASP.NET MVC.

Try ASP.NET AJAX coNTrolS

Try ASP.NET MVc EXTENSioNS

http://bit.ly/1foqMYF
http://bit.ly/MRFm33
http://www.telerik.com/
http://www.telerik.com/products/aspnet-ajax.aspx%3Futm_source%3DEbook%26utm_medium%3Dpdf%26utm_term%3DAJAX_overview_page%26utm_campaign%3DAJAX_One_ASPNET_campaign
http://bit.ly/1foqMYF
http://www.telerik.com/aspnet-mvc%3Futm_source%3DEbook%26utm_medium%3Dpdf%26utm_term%3DMVC_overview_page%26utm_campaign%3DAJAX_One_ASPNET_campaign
http://bit.ly/MRFm33

