
www.twitter.com/teleriktestingwww.telerik.com/test-studio

Telerik

Taking the First Steps in

Web
Load TesTing

http://www.telerik.com/automated-testing-tools/

www.twitter.com/teleriktestingwww.telerik.com/test-studio

An Introduction

Software load testing is generally understood to consist of exercising an
application with multiple users to determine its behavior characteristics. As
testers add users, they measure such characteristics as application response
time for different pages and various measures of system resource utilization
and performance.

Load testing may also consist of increasing the number of users until the
application breaks or otherwise becomes unusable. This provides testers and
other stakeholders with an indication of the upper limit of users possible, as
well as potential areas of weaknesses in individual components.

The pizza test was a poor substitute for more comprehensive
automated load testing. The manual testers worked from a set
task script or scripts, and variation in how they executed those
scripts and the timing of the individual steps often produced
inconsistent or incorrect results. It was also very time-
consuming and usually didn’t provide testers with detailed
information about specific application behaviors.

Today, most organizations prefer load testing by using
simulated users running automated scripts. This approach
provides greater consistency in the methodology, so that
results are more repeatable. It is also much faster and more
reliable in producing good data describing the application and
system characteristics.

The response of many organizations to poorly scaling web
applications is to use more servers, simply because servers
are inexpensive and easy to add. However, depending on the
characteristics of the application, additional servers often don’t
address the underlying problem. Good upfront load testing

The importance of load testing, especially for customer-
facing applications, can’t be overstated. Rarely a week
passes without a story of websites becoming nonresponsive
or crashing under an unexpectedly high number of users.
Organizations regularly lose millions of sales or lost business
opportunities, or suffer embarrassment or bad publicity due
to poorly scaling websites.

However, load testing is also important for many internal
applications. Without good design and implementation
practices, critical applications used by salespeople, customer
support professionals, and others may slow down or fail
when in heavy use.

Other business questions can be just as important.
Organizations may be planning for a new marketing
campaign, sales promotion, or product launch, and must
have confidence that their customer-facing applications
won’t fold under heavier or different traffic. Load testing is
often done in preparation for upcoming changes in existing
application use. Some of the most publicized and costly
failures have occurred to organizations doing high-profile
and expensive advertising campaigns, such as during the
Super Bowl.

In the past, load testing used to be a manual effort.
Colloquially, it was often called a pizza test, as it was
typically conducted by groups of staff members working at
their computers during non-business hours, who would be
offered pizza in return for volunteering their time.

www.twitter.com/teleriktestingwww.telerik.com/test-studio

can save money throughout the application lifecycle in fewer
servers and less electricity. It can also provide an indication
of the integrity of the design and implementation of
the application.

But most important, it can give an organization the ability
to deploy a mission-critical application with the confidence
that its behavior is well understood and that it will stand
up over the expected user load. That is more than worth
the relatively small amount of time and effort needed to do
effective load testing.

Before Load Testing
Starts
Load testing starts with requirements. In many cases
business owners, business analysts, or other stakeholders
specify how many users it has to support. That may be
based on a known number of employees or registered users,
or it may represent an estimate of the expected number of
simultaneous customers or users for the application.

Teams may also have goals for load on the application that
may go above and beyond stated requirements. The goals
may be derived from requirements, but can also be based
on knowledge or experience of the stakeholders in the
application architecture or problem domain. Senior testers
or developers may believe that a certain load should be
achievable, and will look for ways to achieve that goal.

In at least some cases, the stated or implied requirements
represent a guess as to the number of simultaneous users
that the application must support. This is especially true for
customer-facing web applications, which can grow its user
base quickly if the company or application is successful in its
market. In other cases, the number of possible simultaneous
users is completely unknown, because the organization or
stakeholders have no reasonable basis for an estimate.

That’s why it’s important to not just load test with a specific
number of users, but to test with different numbers of
users performing different tasks. Even if the application
meets its initial load requirements, it’s essential that testers
go beyond simply saying that the requirements were met.
If the application use grows over its lifecycle, the data
collected during test is important to determine whether or
not it needs further development.

In addition to looking at the application over multiple load
characteristics, testers also want to look at its maximum
possible number of simultaneous users. This data provides
an estimated upper bound of use, and will also show which
application components or system resource is fully
committed first.

The next thing testers must consider is how to profile
the application under load. This consists of determining
what type of data should be collected to both demonstrate
whether or not the application meets requirements, and to
determine the performance and reliability characteristics of
the application under an increasing load. While response
time is the most important metric here, there are a variety
of other options that provide testers with valuable additional
information on the robustness of the application.

In all cases, testers have to look for real or potential
bottlenecks as the number of simulated users increases.
The obvious system bottlenecks are CPU, disk traffic, and
network traffic, and collecting this data should be at the top of
any load testing list.

But testers need more information in order to characterize the
impact of increasing users on an application. In a distributed
application, testers will want to look at utilization and network
traffic across specific machines, and also examine how
specific parts of the application process data and respond
to requests.

Memory use is also an important characteristic in application
load, in that using more memory than necessary can prevent
an application from effectively responding to more users. An
increasing memory profile as users are added and removed
could also be an indication of a memory leak, which can
happen with either unmanaged or managed code.

Testers will also want to look at individual application
components and their interactions with other components to
determine if there are bottlenecks or inappropriate wait states
that will cause the entire application to slow significantly or
fail as the number of users increase. Other metrics, such as
database calls or cache misses, may make sense depending on
the application.

Development teams need this level of data to help diagnose
and correct defects associated with an inability to meet
requirements, or if there are undesirable characteristics in the
application that should be corrected at some point.

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Setting Up the Load
Tests
Once testers have determined what application and system
characteristics they need to record and measure, they must
consider what tasks the simulated users perform, and
from what browsers and browser versions. To start this
process, they must work with the user community, business
analysts, and product owner to determine common use
cases for the application.

In many cases, these use cases already exist in automated
functional tests, or can be created by combining multiple
tests. If the load testing tool can accept and execute
existing functional tests, that can save a great deal of time
and technical effort over creating load tests from scratch.
Either the tests themselves or their generated network traffic
can drive the load testing tool. Functional tests will have
to be assembled according to the use cases, and additional
tests may need to be recorded to help tie them together to
build use case scripts.

The question of browsers and browser versions can be
answered externally by examining browser use across
the broader Internet, or internally by looking at traffic to
current customer-facing websites. In the case of internal
applications, organizations can dictate which browser or
browsers can be used.

If multiple browser use is required, additional planning is
necessary to make sure the load tests replicate real use as
closely as possible. This is typically done in a simulated
fashion from the load testing tool, rather than physically
using different browsers and browse versions. Load tests
don’t require actual client computers or browsers; instead,
the load testing tool also simulates the selected
browser mix.

Ideally, testers want to replicate the actual user environment
and use cases as accurately as possible. Doing so provides a
level playing field to not only determine if requirements are
being met, but also to gain important information about the
behavior of the application under load.

Load testing is an experimental process, and should be
planned and executed methodically. Testers should change
only a single parameter for each load test, whether it is
the type or mix of scripts, server configuration, test dataset,
or other factor. This will enable testers and developers to
more effectively identify weak spots and diagnose poor
load conditions.

Interpreting the Load
Testing Results
Analyzing and interpreting load testing results can benefit
from a good knowledge of distributed application architecture,
programming language characteristics, system resource
utilization, and the interactions between them. It also helps to
have experience in understanding how an application interacts
with its host computer systems with multiple users.

But even without a high level of load testing skills and
experience, good testers can ask the right questions in
order to determine if the application meets requirements, and
whether it needs more investigation before deployment.

1. Does the application meet requirements for simultaneous
users? How many users does it take before the
application become unresponsive or fails altogether?
These are the most immediate questions testers are trying
to answer, and go a long way toward determining if the
application is ready to be deployed.

2. What does the response curve look like as the number of
simulated users increases? Sometimes requirements also
specify application response time parameters; if not, there is
usually a common sense level of response time that should
be tested. Testers can determine if the application responses
are prompt enough for real use, and if not
investigate further.

3. What do the curves for memory, disk, and network
utilization look like as the number of simultaneous
users increases? These curves can provide information on
potential application defects that may not be detectable
through other means, and also help testers determine any
limitations that should be addressed prior to deployment.

4. What other measured characteristics look unusual or out
of balance? Depending on what characteristics are being
measured, testers may notice spikes, lost transactions or
other potential problems that should be investigated further.

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Telerik

Thanks to advances in the features and usability of
load testing tools, testers can replicate real life use
more closely than ever to determine whether a web
application meets user capacity and response time
requirements, system resource utilization, and other
application characteristics. Because they don’t have
to write code to define use cases and scripts, multiple
tests using different configurations can be run in
less time than it used to take to run a single test.
Understanding how the application is likely to perform
under real life conditions, and identify potential
problems under user load, can go a long ways toward
improving application quality.

Ultimately, load testing is about making sure business
goals are met, and unpleasant surprises minimized
or eliminated entirely. By identifying and addressing
problems prior to deployment, organizations can have
confidence that their applications will effectively serve
the business.

Learn about load testing with Telerik Test Studio

Peter Varhol
Telerik Test Studio Evangelist

 @pvarhol on Twitter.

Summary

http://www.telerik.com/automated-testing-tools/
http://www.telerik.com/automated-testing-tools/load-testing.aspx
https://twitter.com/pvarhol

