
GETTING OFF
ON THE RIGHT FOOT
WITH YOUR TEST AUTOMATION PROJECT

Getting Off on The Right Foot
with Your Test Automation Project

is brought to you by

2

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

User Interface (UI) test automation can add
tremendous value to any software team’s
development and testing processes; however, too
often teams pass by UI automation for a number
of reasons. In this whitepaper you’ll discover what
some of the problems around UI automation are,
and you’ll learn specific approaches to avoid those
problems. You’ll be able to move your focus from
chasing intermittent test failures to adding value to
your project’s overall quality strategy.

Jim Holmes has around 25 years IT
experience. He is co-author of “Windows
Developer Power Tools” and Chief Cat Herder
of the CodeMash Conference. He’s a blogger
and evangelist for Telerik’s Test Studio, an
awesome set of tools to help teams deliver
better software. Find him as @aJimHolmes
on Twitter.

Jim Holmes

About the author

http://twitter.com/aJimHolmes

3

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

TOO MANY AUTOMATION EFFORTS
STRUGGLE OR FAIL OUTRIGHT

UI test automation has long been a bane to software project
teams. Smart groups of people are challenged with suites of
automated tests that have become extraordinarily brittle and
require far too much time to maintain and update when the
system under test changes.

There’s a common pattern many teams follow when starting
off with test automation. Regardless of who you talk to in the
automation industry, they’ll have a story (Or two. Or three.)
that mimics the timeline shown.

Teams start off with automation and are excited about
learning a new approach for testing. A few tests are written
and the team sees some success. After a few weeks though,
the team starts to feel friction around intermittently failing
tests. The team is also struggling to make their chosen
automation tool work properly in their environment.

Enthusiasm continues to wane as the problems and
maintenance work piles up. Eventually some teams abandon
their automation efforts as a sunk value proposition and
return to huge lists of manual regression tests.

En
th

us
ias

m

Time

Lets just
do this
manually...

Oh! This is
actually HARD.Auto-

mation
is FUN!

4

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

COMMON PROBLEMS

Make no mistake, UI automation is a very difficult problem
domain. The technologies used for applications’ UIs can be
hard to work with, the tools for automation can be difficult,
and UI development practices can add to the burden.

Intermittently failing tests are the leading problem for teams.
A developer and/or tester works hard to automate a test
around a new feature, only to see the test failing in the testing
environment. Troubleshooting in the tester’s environment
leads only to frustration when the test passes locally.

Brittle tests also cause rampant headaches for teams: one
small change to the UI, sometimes a change that doesn’t
impact the visible page, can cause tens or even hundreds of
tests to fail. Fixing the failing tests can take hours or days due
to critical information being scattered across every test.

Additionally, tests occasionally have an extraordinary amount
of duplication in them because testers have copied the
same test over and over while simply changing a few input
parameters and the expected output condition.

5

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

IDENTIFYING ROOT CAUSES

The common problems listed above tie back to a number of
common root causes. For example, intermittently failing tests
nearly always trace back to two issues: badly defined element
locators, or synchronization issues when dealing with dynamic
content such as AJAX or JQuery-like frameworks. Additionally,
talented developers writing automation scripts too often
forget basic software engineering/craftsmanship principles
such as Single Responsibility Principle (SRP) and Don’t Repeat
Yourself (DRY).

Getting a solid handle on these specific areas will ensure your
test suites are providing value to your team instead of sucking
the life and morale out of your project because of their
maintenance costs.

6

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

Locators, locators, locators

Automation drivers, frameworks, and toolsets need to
understand how to find elements on the page to interact with.
“Locators” or “Find Expressions” are common terms used for
the mechanics of how the automation tool is able to find
one specific element on a page. Locators can be based on
a number of factors around where and how the element is
displayed in the page’s Document Object Model, or DOM.

Too often automation test writers will use inflexible locators
that cause tests to break when a small change is made to
the page. Many times this can be traced back to selecting an
overly complex XPath-based locator instead of an ID attribute,
or if no ID is available, then at least another method, or at the
minimum a better-crafted XPath.

As a practical example, consider the following graphic that
shows an absolute XPath which starts at the document’s root
and narrows down to the input field for a username. This
overly complex XPath is extremely brittle and will break if any
element is added anywhere to the page above the username.
It will also break if the username field is moved.

7

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

Position-Based Locators

Another problem teams inflict upon themselves are locators
tied to an element’s specific position on the page. We’re not
talking about X-Y coordinates, but rather things like row or
column order. If we’re trying to work with an edit test for the
record holding the Jayne Cobb person shown below, then we
shouldn’t have to worry about the test failing if the table’s sort
order changes. Adding or moving columns in the table also
shouldn’t break the test. (Although you may want separate
tests verifying the proper sort and column order!)

8

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

Dynamic Content, Big Headaches

Forgetting Good Software
Design Principles

AJAX and frameworks/tools like JQuery give us amazingly
responsive web pages, but they also make it extremely hard
to deal with timing issues for our test automation scripts. Our
human eyes guide us to waiting until an AJAX call completes,
or JQuery has finished rendering a new control on a page.
Unfortunately, automation scripts don’t work the same way.
Subtle synchronization and timing issues cause scripts to fail
because the needed elements aren’t currently on the page -
the page is still waiting for that AJAX or JQuery call to finish
their work.

Test code should be treated like production code. Because
it is production code! We should use the same careful
design approaches in our test software as in the systems
we’re testing. Avoiding duplication of locators is critical to
a sustainable test suite. Ensuring we’re creating granular
tests which can be reused as composable blocks is just as
critical. Failing to follow good design principles in test suites
will guarantee exploding maintenance costs as the tests and
system evolve.

9

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

APPROACHES FOR
SOLVING PROBLEMS

All the problems discussed above have proven solutions that
can help teams get through these challenges. Understanding
how to approach these problems is critical to a team’s long-
term success.

Avoiding Locator Duplication

Duplication in software explodes complexity and maintenance
costs. Avoiding this duplication is critical as you evolve your
test suite. It’s especially critical for your element locators.
You can’t spend hours tracking down tens or hundreds of
duplicate locators when, not if, your UI changes.

Many commercial UI automation tools such as
Telerik’s Test Studio or HP’s Quick Test Pro handle locator
centralization for you. Those tools use variants of a repository
to ensure locators are defined only once, with all tests
referencing that central element repository in some fashion.
Updating the repository ensures all tests get updated locator
information as well.

10

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

If you’re writing your automation in coded solutions such as
WebDriver, Watir, or some other API, then there are a number
of approaches to simplify and handle locator definition. Teams
have long used centralized dictionaries to store name/value
pairs for locator names and definitions. External settings files
have also seen modest success, with each test having to load
locators from this external file. Those approaches have worked
well in the past; however, over the last three or four years a
new approach has gradually evolved: the page object pattern.

Page Object Pattern treats each page, or section of a page,
as a unique class in code. Properties and methods from the
page’s class represent elements and services of the page such
as logging on or error messages. The Page Object Pattern
is a natural extension for developers familiar with good
object-oriented development. Moreover, the various open
source automation APIs have libraries and frameworks that
ease the effort around creating page objects. For example,
Jeff Morgan’s Pages gem is a great addition to those writing
WebDriver tests in Ruby. WebDriver’s various bindings also
include support for page objects in their native APIs.

However you’re working with your tests, it’s critical to ensure
you’re approaching your locator definitions in a centralized,
non-duplication fashion.

11

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

Supporting Flexible Locator Strategies

Wherever possible, testers should generally prefer to use
ID values for defining element locators. Per the HTML
specifications, IDs are unique on a valid HTML page. This
ensures the automation script can quickly locate the desired
element simply by scanning the DOM for that ID. It’s fast, it’s
extremely flexible.

Unfortunately, some systems may not lend themselves to
simple locator strategies. Frameworks and platforms may
automate how they create ID values, for example, and they
may do it in a dynamic nature. In such cases it’s often possible
for a developer to at least specify a prefix or suffix to the
element.

If the developer can do that much, then it’s a snap to create
a find logic searching for that unique value. Most commercial
automation tools, and several popular open source APIs,
support defining ID-based locators via some form of “ends
with,” “begins with,” “contains,” or similar approaches. This
allows you to handle situations where a dynamically generated
ID has a unique suffix such as this:

ctrl100_ctrl009_div_ctrl300_username.

In some cases you may not be able to use an ID for your
locators. You may be working with a legacy UI which wasn’t
designed with testability in mind. You may be working
in a system which supports multiple widgets on a page,
eliminating the ability to have unique IDs on those widgets.

12

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

These situations call for alternative approaches. You can look
to name or class attributes, or you can carefully craft an XPath
expression. Not all XPath is evil! It’s a tool which used wisely
can be extremely beneficial. For example, it’s a snap to tie an
input field to a neighboring label with XPath. Consider the
following figure which shows a logon screen. The associated
DOM section is highlighted below it in Firefox’s Firebug.

A simple, flexible XPath expression can be used to define the
locator for that input field:

//label[text()=’Username’]/../input.

Locator strategies are completely unique to every system
simply because each application’s UI is so wildly different from
each other. You’ll need to learn how to create good locators in
your own environments using the general principles shown in
this section.

13

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

This approach ensures we’re still able to find the target row
regardless of where it appears in the table. This block of code
would still find the target row if it was in row one or 11.

Likewise, clicking the Edit link shouldn’t be dependent on
which column it appears in. Given the block above, we can
use a similar approach to find the Edit anchor by querying the
target row we’d already located:

IWebElement editLink =
aRow.FindElement(By.LinkText(“Edit”));

Commercial tools offer up similar features, usually both via
coded solutions and native tool functionality as well. At the
end of the day, you need to understand how your tools or API
work, and leverage those features to ensure you’re crafting
great locator strategies.

Solving Positional-Based Locators

In the table example shown earlier, it’s important to not rely
on locators hard-wired to a specific row or column. Instead,
understand how your particular automation tool or API can
interact with the page. Look to create dynamic locators by
querying objects to find elements underneath them match
particular criteria.

Here’s a snippet of an example in C# using WebDriver:

IWebElement table =
browser.FindElement(By.XPath(“table_id”));
IWebElement targetRow = null;
IList<IWebElement> rows =
table.FindElements(By.TagName(“tr”));
foreach (var row in rows)
{
 if (row.Text.Contains(“Cobb”))
 {
 targetRow = row;
 }
}

14

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

Resolving Dynamic Content
Without Headaches

Locators are the single most important thing to understand
in your system; however, dynamic content is a close second.
The problem lies in the inability of automation tools to detect
when an AJAX call or JQuery event is changing the content of
the page. This problem spans all web automation tools from
Test Studio to Selenium WebDriver. Events which cause a
page load or refresh get handled by all modern automation
tools, but the dynamic events are a different issue.

The common, tried-and-proven patter for creating rock-
solid tests in dynamic content situations is to use explicit
waits for the condition needed by the next step. A great
example of this is from Microsoft’s ASP.NET AJAX control
toolkit examples. The following figure shows a cascading
menu system. Each menu selection causes an AJAX call back
to the server, which returns the items for the following menu
based on the choice the user just made.

15

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

That tiny little server callback is what causes automation
workers serious grief. It’s dynamic, it’s impacted by network
conditions, and it’s always slightly different timing.

Using explicit waits before interacting with a newly updated
element are the key to saving your team’s sanity in these
situations. In the example above, you’d create an explicit wait
for the Make dropdown to fully populate with its options, then
select the particular option you want for that pass. The Model
option list would get the same treatment: an explicit wait for
the exact contents to load, followed by the selection action.

This pattern of an explicit wait coupled with an interaction is a
tried, proven strategy for every dynamic content situation. The
pattern is the same regardless of whether you’re waiting on
content or controls to appear on the DOM, or even an existing
control to change its state (inactive to active, eg).

Implementing waits in your test scripts is completely
dependent on the tool or API you’re using. Telerik’s Test
Studio uses a Wait step; WebDriver utilizes the WebDriverWait
class in the support namespace. Other tools and APIs have
similar features.

Explicit waits eliminate the frustrating intermittent failures due
to synchronization issues around dynamic content.

16

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

Composability and reuse don’t have to be at the page level,
either. You can look to break down complex forms into
small pieces of functionality designed to handle one specific
responsibility such as customer identification, ticketing, etc.

Careful reuse of functionality lets you write more accurate,
thorough tests at a much faster rate - and at the same time
dramatically decreases maintainability costs.

You’ve seen how good design for storing element locators
helps teams create maintainable tests by eliminating
duplication around element locator definitions. The same
concept of test or method reusability is just as critical to good
test case creation. The ability to compose elaborate tests from
smaller building blocks ensures teams aren’t wasting valuable
time updating the same functionality across multiple tests
when a part of the system’s workflow changes, for example.

Design each test such that it’s granular, specific, and doesn’t
rely on other test cases first. This enables you to reuse
functionality such as logging on to a system or entering
customer data.

Helping Maintainability
by Supporting Good Design

17

Share this Ebook!
Getting Off on The Right Foot

with Your Test Automation Project
is brought to you by

Test Studio is an automated testing tool that offers
an intuitive, codeless and productive way to test
any application! Complex AJAX, Silverlight and WPF
scenarios, MVC, client-side functionality, JavaScript
calls, data-driven testing – we cover them all. Test
management and failure resolution are brought to
a new level, making you times more productive.
Even more, the slick yet simple UI will have you
testing like an expert in minutes.

Download
a fully functional free 30-day trial

KEEPING YOUR AUTOMATION SUITES
SANE, STABLE, AND MAINTAINABLE Test Studio

The approaches in this paper aren’t a magic panacea for
everyone’s automation woes. UI automation is an incredibly
hard problem, and it’s completely different for each
application. You’ll have to learn the fundamentals of your
application works, and you’re still responsible for ensuring
you’re creating solid automation tests.

Spend time learning how to get past the basic domain
problems like locator strategy, dynamic content
synchronization, and support for good test case design. That
leaves you more time to focus on the real problem, which
is how to deliver more great value to the projects you’re
working on.

	Button 12:
	Button 2:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:

	Button 14:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:

	Button 15:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:

	Button 11:
	Button 13:
	Button 3:
	Button 4:
	Button 5:
	Button 6:
	Button 7:
	Button 8:
	Button 10:
	Button 1:

