

www.telerik.com/test-studio

An Introduction to Performance Testing

Performance Testing: Laying the Groundwork

The phrase “performance testing” can mean a great
many things to different people in different scenarios,
so I thought covering a few of the different types of tests
may be helpful.

Performance Testing is generally an umbrella term
covering a number of different, more complex test
environments. I’ve also used the term to describe a very
simple set of scenarios meant to provide a baseline for
performance regressions.

Load Testing generally uses a number of concurrent
users to see how the system performs and
find bottlenecks.

Stress Testing throws a huge number of concurrent
users against your system in order to find “tipping
points” – the point where your system rolls over and
crashes due to a huge amount of traffic.

Endurance/Soak Testing checks your system’s behavior
over long periods to look for things like degradation,
memory leaks, etc.

Wikipedia’s Software Performance Testing page has
some very readable information on the categories.

You can also look at performance testing as a slice
of your system’s performance. You can use a specific
scenario to dive down in to specific areas of your
system, environment, or hardware.

Load, stress, and endurance testing are all that, but
turned up to 11. (A reference to Spinal Tap for those
who’ve not seen the movie.)

With that in mind, I generally think of performance
testing in two categories: testing to ensure the system

meets specified performance requirements, and testing
to ensure performance regressions haven’t crept into
your system. Those two may sound the same, but
they’re not.

Performance testing to meet requirements means
you’ll need lots of detail around expected hardware
configurations, baseline datasets, network
configurations, and user load. You’ll also need to
ensure you’re getting the hardware and environment
to support those requirements. There’s absolutely
no getting around the need for infrastructure if your
customers/stakeholders are serious about specific
performance metrics!

Performance testing to guard against regressions can
be a bit more relaxed. I’ve had great successes running
a set of baseline tests in a rather skimpy environment,
then simply re-running those tests on a regular basis
in the exact same environment. You’re not concerned
with specific metric data points in this situation – you’re
concerned about trends. If your test suite shows a
sudden degradation in memory usage or IO contention
then you know something’s changed in your codebase.
This works fine as long as you keep the environment
exactly the same from run to run—which is a perfect
segue into my next point.

Regardless of whether you’re validating performance
requirements, guarding against regressions, or flooding
your system in a load test designed to make your
database server weep, you absolutely must approach
your testing with a logical, empirical mindset. You’ll
need to spend some time considering your environment,
hardware, baseline datasets, and how to configure your
system itself.

Performance testing isn’t something you can slap
together and figure out as you go. While you certainly
can (and likely will!) adjust your approach as you move
through your project, you do indeed need to sit down
and get some specifics laid out around your testing
effort before you begin working.

First and foremost: set expectations and goals
Ensure everyone’s clear on why you’re undertaking the
performance testing project. If you are looking to meet
specific metrics for delivering your system then you’ll
need to be extremely detailed and methodical in your

initial coordination. Does your system have specific
metrics you’re looking to meet? If so, are those metrics
clearly understood – and more importantly reasonable?

Define your environment
If those same metrics are critical to your delivery, then
they will also need to be defined based on a number of
specific environment criteria such as exact hardware
setups, network topologies, etc. These environments
should be the same exact environment you recommend
to your customers. If you’re telling your system’s users

http://www.telerik.com/automated-testing-tools/
http://en.wikipedia.org/wiki/Software_performance_testing

www.telerik.com/test-studio

they need a database server with four eight-core CPUs,
32 GB of RAM, and a specific RAID configuration for the
storage, then you should look to get that same hardware
in place for your testing.

A tangential topic: it’s happened more than once that
a server and environment acquired for performance
testing somehow gets borrowed or time-shared out to
other uses. Timesharing your performance environment
can be a highly effective use of expensive resources,
but you’ll need to ensure nothing, absolutely nothing,
is being utilized on that server once your performance
runs start – you have to have dedicated access to the
server to ensure your metrics aren’t being skewed by
other processes.)

Agree on baseline data
Something that’s commonly overlooked is the
impact of your system’s baseline dataset on your
performance tests. You likely won’t get anything near
an accurate assessment of a reporting or data analysis
system if you’ve only got ten or thirty rows of data in
your database.

Creating baseline data can be an extremely complex
task if your system is sensitive to the “shape” of the
data. For example, a reporting system will need its
baseline data laid out across different users, different
content types, different date patterns.

Often the easiest route to handle this is to find a live
dataset somewhere and use that. I’ve had great success
coordinating with users of systems to get their datasets
for our testing. You may need to scrub the dataset to
clear out any potential sensitive information such as
e-mail addresses, usernames, passwords, etc.

If using a live dataset isn’t an option, you’ll need to
figure out tooling to generate that dataset for you.

Determine your usage scenarios
Talk through the scenarios you want to measure.
Make sure you’re looking to measure the most critical
scenarios. Your scenarios might be UI driven, or
they could be API driven. Steve Smith has a terrific
walkthrough of a real world scenario that gives a great
example of this.

Set up your tooling
Once you’ve got a handle on the things I’ve discussed
above, look to get your tooling in place. Performance
testing utterly relies on an exact, repeatable process.
You’ll need to do a large amount of work getting
everything set up and configured each time you do a
perf run. Avoid doing this work manually; instead, look
to tooling to do this for you. You shouldn’t rely on doing
the setup manually for two reasons. One: automating

setup ensures you’ll cut out any chance of human error.
Two: it’s really boring.

Build servers like Hudson, Team City, or TFS can
interface with your source control and get your
environment properly configured each time you need to
run a perf pass. Scripting tools like PowerShell, Ruby,
or even good old command files can handle tasks like
setting up databases and websites for you.

You’ll also need to ensure you’re setting up your tooling
to handle reporting of your perf test runs. Make sure
you’re keeping all the output data from your runs stored
so you can keep track of your trends and history.

Change only one variable at a time. Compare
apples to apples!
It’s critical you take extraordinary care with the
execution of your performance testing scenarios! You
need to ensure you’re only changing one variable at a
time during your test passes, or you won’t understand
the impact of your changes.

For example, don’t change your database server’s disk
configuration at the same time you push a new build to
your test environment. You won’t know if performance
changes were due to the disk change or code changes
in the build itself.

In a similar vein, ensure no other folks are interacting
with the server during your performance run. I alluded
to shared servers earlier; it’s great to share expensive
servers for multiple uses, but you can’t afford for
someone to be running processes of any shape or form
while you’re doing your performance passes.

Profiling: Taking the simple route for great
information
All the work above can seem extraordinarily intimidating.
There’s a lot to consider and take in to account when
moving through some of the more heavyweight
scenarios I already laid out.

That said, you can look to simpler performance
profiling as a means to get great insight in to how your
application is behaving. Profiling enables you to use
one scenario, or a very small set, and see in a slice
how your application’s behaving. Depending on the
tooling you can see results of performance back to the
browser, dive in to performance metrics on the server
(think CPU or disk usage, for example). You may even
be able to dig down in to the application’s codebase
to see detailed metrics around specific components of
the system.

Profiling is a great way to start building a history of your
application’s performance. You can run regular profiling
tests and compare the historical performance to ensure
you’re not ending up with performance regressions.

http://www.telerik.com/automated-testing-tools/

www.telerik.com/test-studio

Test Studio can help you build web performance tests that offer an unparalleled insight into the performance
metrics of your application. Use existing functional tests as performance tests without any modifications! Start
gathering in-depth data on server processing time, network latency, and client rendering time.

Jim Holmes has around 25 years IT experience. He
is co-author of “Windows Developer Power Tools”
and Chief Cat Herder of the CodeMash Conference.
He’s a blogger and evangelist for Telerik’s Test Studio,
an awesome set of tools to help teams deliver better
software. Find him as @aJimHolmes on Twitter.

What to Monitor (Plus Learning Resources)

Start small, start smart

As you’ve read, performance testing can be particularly
complex when you’re looking to ensure high
performance, reliability, and scalability. You need to
approach the effort with good planning, and you need
to ensure you’re not changing variables as you move
through the testing.

Make sure your performance efforts get you the
information you need. Start with small environments
and scenarios, ensure you’ve clearly laid out your goals
and expectations, and keep a careful eye out as you’re
running your tests.

What to Monitor?
Figuring out which metrics, measurements, and
counters to monitor can be extremely daunting—there
are hundreds of individual counters in Performance
Monitor alone! In most cases you don’t need anywhere
near the entire set of metrics. A few counters will give us
all the information you generally need for starting your
performance testing work.

Most performance testing gurus will tell you just a few
items will get you started in good shape:

•	 Processor utilization percentage

•	 ASP.NET requests per second

•	 SQL Server batch requests per second

•	 Memory usage (total usage on the server, caching
usage)

•	 Disk IO usage

•	 Network card IO

If you’re doing load testing you’ll likely be interested
in errors per second and queued requests. Often
times soak or endurance testing will look to counters
associated with memory leaks and garbage collection
too—these help you understand how your application
holds up over a long period of stress. However, those
are different scenarios. The few counters mentioned
above will get you started in good shape.

Where to Learn More?
Microsoft’s “Performance Testing Guide for Web
Applications” is somewhat older, but remains a
tremendous resource for learning about performance
testing. It’s an extensive, exhaustive discussion of
everything around planning, setting up for, executing,
and analyzing results from your performance testing.
The guide is freely available on Codeplex.

Steve Smith of NimblePros (now known as the Telerik
Enterprise Services group) in Kent, Ohio, has been
extremely influential in my learning about performance
testing. Steve’s been appointed by Microsoft as a
Regional Director because of his technical expertise
in many areas. He blogs extensively on many
software topics and has great practical examples for
performance testing. He also has an online commercial
course offered through Pluralsight that’s well worth
checking into.

The website Performance Testing has a great number
of references to performance testing information across
the Web. The site lists blogs, articles, training material,
and other highly helpful information.

Go! Get Started!
Spend some time planning out your performance testing
effort. Make sure you work HARD to only change one
variable at a time. Don’t get flooded with information;
more often less information can be more helpful at
the start.

Performance testing is a tremendous asset to
your projects, and it can also be an extremely fun,
interesting, and rewarding domain to work in.

Go! Get started!

Check out Test Studio

http://www.telerik.com/automated-testing-tools/
https://twitter.com/aJimHolmes
http://perftestingguide.codeplex.com/
http://perftestingguide.codeplex.com/
http://ardalis.com/
http://pluralsight.com/training/courses/tableofcontents%3FcourseName%3Dweb-perf
http://pluralsight.com/training/courses/tableofcontents%3FcourseName%3Dweb-perf
http://performance-testing.org/
http://www.telerik.com/automated-testing-tools/performance-testing.aspx

