
www.twitter.com/teleriktestingwww.telerik.com/test-studio

THE DEVELOPER/TESTER

GUIDE TO BETTER
COLLABORATION
Or why developers
& testers should
bury the hatchet?

Telerik

http://www.telerik.com/automated-testing-tools/

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Contents Introduction:

INTRODUCTION: WHY COLLABORATE?..2

THINGS TESTERS CAN LEARN FROM DEVELOPERS...3

 • Backing APIs...3

 • Configuration / Switches..5

 • Craftsmanship and Code Smells..6

 • Testable User Interfaces...10

THINGS DEVELOPERS CAN LEARN FROM TESTERS...13

 • Good Test Case Design...13

 • Improve Error Handling and Sad Path Coverage...13

 • Validate value of work item..15

CONCLUSION: WHY COLLABORA TE?..16

COLLABORATION: IT PAYS OFF..16

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Introduction: Why Collaborate?

Why should testers and developers collaborate?

It’s a perfectly legitimate question, particularly to those who’ve been in the software industry
for a number of years and have seen the coming and going of any number of buzzword
fads.

However, collaboration among members of a team producing software isn’t just a fad. The IT
industry is finally moving away from stovepiped, separated groups to a much healthier, more
productive whole team environment. Case studies and experience reports are increasingly
confirming the value of this transformation.

This guide focuses on one aspect of whole team interaction: collaboration between
developers and testers. Both roles bring tremendous skills and experience to a team. Having
the two work together often results in a marked improvement in the quality of work, and a
noticeable decrease in waste and revision.

We’ll examine how each role helps the other to look at software development in new ways.

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Good developers bring solid design, engineering, and
craftsmanship expertise to a team. Good testers should
view partnering with developers as an extraordinary
opportunity to expand their skills, and do so whenever
possible. Testers can adopt many concepts from
developers to make their test suites more valuable,
maintainable, and powerful.

Backing APIs
Backing APIs, sometimes called test support
infrastructure, are critical to a flexible, powerful, and
maintainable automation suite. Backing APIs let you
leverage your system’s internal functionality to handle
things like configuration, data creation and cleanup, or
test oracles. These sorts of actions can sometimes be
performed by UI automation; however, they’re better
left to faster, more flexible methods such as web service
endpoints, internal APIs, or stored procedures.

Many testers are often hesitant to try this approach
themselves, since few testers are comfortable writing
database accessors, web service calls, or system call
invocations. In these cases, reaching out to developers
for help makes perfect sense.

For instance, let’s look at a test that creates a user in a
system:

Things Testers
can learn from
Developers

www.twitter.com/teleriktestingwww.telerik.com/test-studio

The purpose of this test is to validate whether a properly
created user is persisted in the system’s database. We
want to avoid any error handling around duplicate user
creation—tests shouldn’t deal with error handling, they
should focus on checking the validity of the tested slice.
We can avoid this problem a couple different ways:
ensure we create a unique user each time we run this test,
or we could ensure all test users are deleted before we
run this test.

Testers could write UI automation scripts to handle this
task (start a browser, log on to the system, navigate to
the system’s administration section, delete any existing
test users, e.g.), but that’s slow and brittle. Teams are
much better off leveraging code-level APIs within the
system itself. Step 2 in the figure above does just that, via
this bit of code:

Here a developer has created a simple method
(Delete_all_Foo_contacts_from_database) on a helper
class (ContactFactory) in order to clear out test users.
This makes it easy for less-technical testers to get the
job done using just enough code, without having to
understand either the deep internals of the system or
the technical details of invoking a web service. Note
that how this method works is hidden from the user of
the backing API. This concept—abstraction—is critical
in good software design. Abstraction separates what
something does from how it is done. The tester doesn’t
know, or care, if the ContactFactory is calling web
services, internal APIs, or a command line utility. This
enables the team members maintaining the backing
API to switch to the most appropriate approach for the
particular operation— and the testers would never have
to touch their tests!

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Configuration / Switches
Automation professionals are often asked, “How do
we automate CAPTCHA or similar difficult third-party
features and tools?” The correct answer is nearly always,
“Don’t.”

CAPTCHA is a perfect example of something that should
be bypassed or turned off, versus struggled with. The
point of an automated registration test shouldn’t be
checking a third-party bot filter (CAPTCHA), the point
should be to ensure a newly registered user actually
populates in your database. Futzing around with trying to
detect CAPTCHA graphics and work through it is simply a
waste of time and doesn’t bring value to your automation
suite.

Testing sent e-mail is another area fraught with
frustration. The last thing testers should ever be doing
is writing tests that log on to Gmail in order to validate
formatting and content of system-generated mails. Both

CAPTCHA and email are perfect examples of collaborating
with developers to control system configuration during
automated test passes.

There’s no reason we shouldn’t have separate system
configurations for testing and production, as long as
we carefully control (and test!) the deployment process
to ensure no critical functionality is shut off in our
production environments. This approach enables testers,
developers and IT team members to work together to
change the system to make it more testable within certain
constraints. Developers will have to do additional work
allowing features like CAPTCHA or mail providers to be
swapped out or shut off; however, careful discussion
should enable the team to if it makes sense to undertake
such an effort.

Exact implementation of the configuration switches will
be extremely specific to each system under development;
however, here’s how one implementation might look for a
.NET application hosted under IIS using a web.config file:

class Web_config_switches
{
 public void shut_off_captcha()
 {
 change_appSettings_key_value(“captchaActive”, “false”);
 }
 public void turn_on_captcha()
 {
 change_appSettings_key_value(“captchaActive”, “true”);
 }
 private static void change_appSettings_key_value(string key, string value)
 {
 string path_to_config = @”c:\some_dir\web.config”;
 Configuration webConfig =
WebConfigurationManager.OpenWebConfiguration(path_to_config);
 webConfig.AppSettings.Settings[key].Value = value;
 webConfig.Save(ConfigurationSaveMode.Modified);
 ConfigurationManager.RefreshSection(“appSettings”);
 }
}

www.twitter.com/teleriktestingwww.telerik.com/test-studio

This snippet of code assumes the system under test
has a section of its web.config file which includes
a captchaActive flag. The system under test would
obviously need to support altering CAPTCHA status
based on that flag—and details of that implementation
are far beyond the scope of this work.

Automated tests could simply reference Web_config_
switches.shut_off_captcha() directly from a setup step or
test in their tests or lists as appropriate.

Note one significant caveat when working with system
switches or changes in configuration: you absolutely
must have a set of automated tests that verify the system
is correctly configured when deploying to non-test
environments. These automated checks must be part of
your regular deployment processes, otherwise you risk
potentially rolling out your system to production with
critical features deactivated. You do not want to be on
the receiving end of that call at 2:42 AM.

Craftsmanship and Code Smells
Software craftsmanship and software engineering
disciplines have a direct correlation to good testing. The
software craftsmanship movement brings a sense of
pride in one’s work, and frames that in the mindset of
carefully learning good practices along an entire career
of work. Software engineering contributes concrete
metrics and practices to the show in a great compliment
to the craftsmanship movement.

Good testers can take several principles to heart from
both domains. Good developers know to look for
“code smells,” clear indications a section of code is too
complex, potentially a maintenance nightmare, or flat
out wrong. (The term “code smell” was apparently first
coined by Kent Beck and Martin Fowler as part of the
work for Fowler’s seminal Refactoring: Improving the
Design of Existing Code.)

Code Smell: Complexity
Code smells come in several areas. First off would be
overly complex code. Nested ‘IF’ statements in code have
long been recognized as a direct contributor to overly
complex, hard-to-understand, bad code. See Wikipedia’s
section on Cyclomatic Complexity as a starting point.
The same concept goes for tests as well, as the following
image illustrates:

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Code Smell: Mixed Concerns
IF statements are bad practice that they often mix several
concerns. The test above checks at least three different
test flows (tires, videos, computer supplies), plus logging
on if needed. Mixed concerns indicate the test case isn’t
well-focused—it’s working on too many things at once.
A failure in one section of this will likely mask potential
failures in other areas.

Finally, mixing numerous concerns in one test case makes
the case harder to maintain. How do you remember
where to find the section of your test suite that focuses
on checking videos if you have five, ten, or more
scenarios mixed in each test case (file)?

In the software engineering/craftsmanship domains,
mixed concerns are often referred to as violations of the
Single Responsibility Principle. SRP means that one class
or method should focus on doing one thing and leave
other concerns to different classes or methods.

Code Smell: Duplication
This same test provides a great example of the Don’t
Repeat Yourself (DRY) principle. DRY helps you avoid
maintenance nightmares incurred when functionality is
duplicated numerous times throughout a codebase. If
one thing in a piece of functionality changes, you’ll find
yourself having to update that functionality everywhere it
occurs—and the odds of missing one instance escalates
proportionally to how often it is repeated.

The logon workflow in steps three to nine is a common
feature and will likely be duplicated in every test
requiring a logon. The impact of this can’t be overstated:
imagine having to update hundreds or thousands of your
tests when (not if!) your logon process changes.

The logon-related steps should be immediately moved
to a separate test which can be used as a component in
other tests. This way no other tests need to be updated if
the logon workflow ever changes.

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Avoiding Smelly Code and Tests
Developers can help testers avoid these situations by
sharing their experience and patterns they’ve picked up
through their work. Testers can learn to head off smelly
code via good design principles and practices. Developers
can also teach testers about refactoring, the process of
changing the structure or implementation of software
without changing its behavior.

Testable User Interfaces
Too often, little thought is given to testability at the user
interface level. This creates a serious burden on testers
who have to create convoluted find logic based on brittle
or overly complex XPaths, or rely on fickle conditions such
as inner text of target elements. Occasionally testers may
mistakenly rely on dynamic IDs for locators.

ASP.NET webforms is a particularly egregious offender in
this aspect because its generation of ID values is based on

the control’s position in the overall control hierarchy. An
example might be ctl00_SamplesLinks_ctl10_SamplesLink
which is dependent on the position of at least two other
controls in the hierarchy. This becomes a serious issue
when trying to create flexible locators that won’t break
when controls are added elsewhere in the DOM above
the control.

Developers can work with testers to modify the user
interface to make it more stable for functional tests.
For example, the figure below shows a grid control
populated with data. The ID of the grid by default would
be ct100_MainContent—totally dependent on the grid
never moving from its position in the MainContent div
element.

In this example, however, the developer has appended
“PeopleGrid” to the grid’s ID as shown in the .aspx page’s
markup below, resulting in the more specific ID “ct100_
MainContent_PeopleGrid” as shown below.

www.twitter.com/teleriktestingwww.telerik.com/test-studio

This means testers can now use a find expression for this grid using the “EndsWith” form.

These easy steps decouple the grid’s find logic from its location on the page and will dramatically increase the test’s
flexibility when the page layout changes. (Note, that’s a when it changes, not if!).

www.twitter.com/teleriktestingwww.telerik.com/test-studio

No, Grumpy Testers Don’t Have Cooties, collaboration
between testers and developers isn’t just a one-way
street. Testers bring a rich, varied view to the team and
developers should learn to leverage that in order to
improve their own craft.

Good Test Case Design
Earlier we discussed code smells in software code. As
developers become more involved in the whole team
approach to software development, they will likely be
part of creating test cases—automated, manual, or
exploratory/session charters. The same principles of
clean code apply to these test cases: it’s important to not
conflate concerns, create complexity, ensure specificity
and validity, etc. Testers can provide critical feedback on
these aspects of test case design.

Things Developers
can learn from
Testers

Improve Error Handling and Sad
Path Coverage
It may be a sad stereotype, but too often developers
focus on happy paths when designing systems or writing
tests. They’ll miss critical boundary conditions, and
sometimes don’t take the broader view on business use
or infrastructure issues. Testers can help flesh out better
designs for handling likely error conditions around inter-
component communication, long-running asynchronous
processes, and other architectural or design issues. It
doesn’t matter that the tester doesn’t know how to code
up a solution in these instances; it’s the tester’s domain
knowledge and experience that are critical.

Testers can be a great help in pairing sessions whether
developers are doing regular development or Test Driven
Development as well. Take the following method as an
example. It’s intended to compute the wages for hourly
or salaried workers based on their rate and number of
hours worked. Salaried workers get straight time no
matter how many hours they work, and hourly workers
get time and a half for anything over 40 hours. [NOTE:
No, this is NOT production-ready code. This is sample
code!]

public float ComputeWages(float hours,float rate,bool isHourlyWorker)
 {
 float wages = 0; if (hours > 40)
 {
 var overTimeHours = hours - 40;
 if (isHourlyWorker)
 {
 wages += (overTimeHours*1.5f)*rate;
 }
 else
 {
 wages += overTimeHours*rate;
 }
 hours -= overTimeHours;
 }
 wages += hours*rate;
 return wages;
 }

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Type Worker

Hourly

Hourly

Salary

Salary

Hours

40

41

41

40

Rate

5

5

5

5

Expected

200.0

207.5

205.0

200.0

A developer might come up with a quick set of test
cases similar to the following:

Testers would quickly flesh this out with additional use
cases for zero amounts in rate and hours, negative
values for rate and hours, and would also likely ask
domain-level questions like “How do we handle an
hourly worker that switches to salary in the middle of
a pay period?” or “What’s the maximum amount of
hours an employee can work in a pay period?”

This sort of feedback, especially early in a project,
can be a tremendous boon to a team as they work to
deliver the highest value possible to their customers.

Validate value of work item
Testers can also provide helpful feedback on basic
assumptions made about feature value. Testers often
act as customer advocates, and will likely have different
insights into customer habits and desires. This can
be something as simple as “Customers are very price
sensitive and prefer cost as the default sort order, not
alphabetic.”

More importantly, testers can help validate or disprove
the basic value assumption of features before a single
line of code is written. “No, we’ve never had any issues
voiced from customers around confusing colors on the
test list screen. What we do know is they want better
sorting and searching features.”

This sort of collaboration can help head off wasted time
creating features, and help the team focus on much
more valuable, productive work.

www.twitter.com/teleriktestingwww.telerik.com/test-studio

Try Test Studio for free.

Collaboration pays off.
As a tester, collaboration with developers may
not always be easy, but in the long run you’ll
be happy you made the effort. Your tests will
be more maintainable and easier to write, and
you’ll be delivering better software to your
customers.

Conclusion: Why Collaborate?

www.telerik.com/test-studio%20

