
©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d. The State of C#
By Kevin Griffin

WHITEPAPER

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Table of Contents

A Brief History Lesson / 3

Career Landscape for a C# Developer / 4

Tools of the Trade / 5

Platforms / 7

Fifteen Years of Innovation and Features / 10

What is New in C# 7.0? / 11

Stable Foundation, Stable Career / 17

Progress.com 3

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

A Brief History Lesson
Imagine being a software developer in the late 90’s.
You have a wide variety of tools at your disposal:
C++, Java, Delphi, Visual Basic, FoxPro—and this
list goes on. Each of these languages came with
an exhaustive list of benefits, but also with its own
unique lists of flaws.

In the early 2000’s, Microsoft publically announced
plans for the .NET Framework, which was a series
of managed libraries. This new framework, however,
needed a new language. Originally codenamed
“Cool,” C# was born.

C# was originally designed to be an open standards-
based language. Each version of C# has gone
through approval by not just Microsoft, but by ECMA
International and the International Organization for
Standardization (ISO). What does that mean to a
developer? Anyone can build a C# compiler for their
operating system. The Mono Project, which is an
open-sourced implementation of the C# complier
and the .NET Framework, is a perfect example of the
C# standard in action.

C# has gone through five major revisions since
its initial 1.0 in 2002. Over this time, there have
been a multitude of significant additions such
as: generics, anonymous methods and types,
automatic properties, expression trees, dynamics,
asynchronous methods and compiler-as-a-service.
This is not an exhaustive list of course, but you can
see how C# has grown over the years.

Whether you are a seasoned professional or a
student looking to find a direction in this industry,
the question you should ask yourself is, “Should C#
be a viable tool to have in my toolbox?

https://www.progress.com/

Progress.com 4

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Career Landscape for a
C# Developer

In its annual survey of the technical community,
StackOverflow rated C# as the 5th top tech to know
for 2016. In addition to this, developers were asked
to rate the languages they loved, dreaded and
wanted to use most. If we look at a correlation of top
tech compared to most loved, you would find that
C# a language that is both loved by developers and
in the top tech stack.

What does that mean for other languages in the top
tech stack? While there is a lot of development being
done in JavaScript, Java and Android, none of those
are languages that developers would admit to love
working with. C# falls into both categories.

What does the salary of an average C# developer
look like? A full stack developer that uses C#
can make on average $95,000 per year. This is
often combined with another useful skill, such as
JavaScript. The only way to attain a higher average
salary, say $105,000, would require a developer to
work with cloud-based technologies like React or
Redis.

For a front-end developer, the pay scale decreases
to an average of $75,000 per year. The survey does
not state whether front-end specifically means web
developer or include client application development.

A C# developer specializing in either data science
or machine learning can earn on average $85,000
per year. The same number is also true for mobile
developers that work with C# as their primary
development language. Even though there is a slight
leaning towards developers focusing on the iOS
platform versus Android, it doesn’t seem to reflect
too much on a C# developer who is capable of
developing for both platforms using Xamarin.

https://www.progress.com/
http://stackoverflow.com/research/developer-survey-2016

Progress.com 5

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Tools of the Trade
The most well-known developer tool in the C#
ecosystem is Visual Studio, an Integrated Development
Environment. It is important to understand that Visual
Studio is not just limited to C#. In fact, in the years
leading up to the creation of C#, Visual Studio was the
platform of choice for developers of Windows-based
applications using C/C++ and Visual Basic.

Today, a wide variety of languages is supported within
Visual Studio. These languages include C/C++, Visual
Basic, C#, F#, Python, Ruby, HTML, JavaScript, CSS and
more.

This variety of language support is made possible by
the highly extensible plugin system exposed within the
editor. It allows for a developer within Microsoft, and
even out in the community at large, to develop plugins
that work directly with the Visual Studio subsystems.

There are many features of Visual Studio that keep
developers coming back. First, there is the world-class
code editor. As you type code into the editor, you
are often assisted directly by Visual Studio through a
feature called Intellisense. This feature analyzes your
code after every keystroke, and can often provide auto-
completion of variables and methods. This intelligent
foresight is crafted specifically for the language you’re
developing in, meaning C# Intellisense and CSS
Intellisense are different experiences that solve the
same type of problem. The built-in debugging tools
help you narrow down specific problems and step
through them one line of code at a time.

Is there a feature Visual Studio is missing, but would
make your development experience much better?

There is a large group of industry vendors who develop
tools to augment and enhance the development
experience inside of Visual Studio. For example, Telerik
by Progress is the maker of JustCode, a Visual Studio
extension that makes coding faster and easier by
adding more intelligence and shortcuts into the code
editor than what comes out of the box.

Previous iterations of Visual Studio required payment
directly for the license or allowed you access through
an active MSDN subscription. With the release of
Visual Studio 2015, Microsoft introduced Visual Studio
Community Edition, a free version of the Visual Studio
platform that allows support for any plugin you
would like to install. Unlike the previous Visual Studio
Express SKUs, any application created by an individual
developer can used for commercial purposes.

https://www.progress.com/
http://www.telerik.com/
http://www.telerik.com/
https://www.visualstudio.com/vs/community/
https://www.visualstudio.com/vs/community/

Progress.com 6

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Visual Studio is the Rolls Royce of development
environments. The largest hurdle for some developers
is that Visual Studio can be a heavy tool to use and
is only supported on Windows. The industry today is
more supportive of tools that can work across different
platforms, specifically OSX or Linux.

In 2015, at the Microsoft Build conference, Microsoft
announced the Visual Studio Code editor. Visual Studio
(VS) Code is an open-source code editor built for use
on Windows, OSX and Linux.

Even though it is a more lightweight tool, VS Code
supports many of the same features that you can
find in Visual Studio. It has built-in syntax highlighting
support for a multitude of languages, such as C#, C++,
F#, Elixir, Docker, Python, Ruby and more!

VS Code does not offer the complete Intellisense
solution you would find in Visual Studio. VS Code,
however, does provide robust code completion
functionality for several languages.

For developers working with C#, Node.js and Python,
there is additional built-in debugging support.

By combining lightweight architecture and cross
platform support, VS Code is an excellent tool for a
developer getting started with C#.

Lastly, if you are already a fan of another editor that
isn’t VS Code, you are not out of luck. Developers
from Microsoft, along with many outside contributors,
have built an amazing plugin called Omnisharp. With
Omnisharp, you can inject the best parts of Visual
Studio’s Intellisense directly into your editor of choice.

Currently, Omnisharp is supported on Atom, Brackets,
Emacs, Sublime Text and Vim. It is also the engine that
powers the code completion features of VS Code.

The underlying goal of all these tools, regardless of
which one you choose to use, is that as a developer
working with C# and the .NET Framework, your
experience should be like none other.

https://www.progress.com/
https://code.visualstudio.com/c?utm_expid=101350005-27.GqBWbOBuSRqlazQC_nNSRg.2&utm_referrer=https%3A%2F%2Fwww.google.com%2F
http://www.omnisharp.net/

Progress.com 7

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Platforms
What have we covered so far? C# is a standards-based language that has grown exponentially in its feature
set over the past 15 years. Combine that with a series of world-class development tools, and you are setting
yourself up for a great career of development focused solely on Windows, correct?

Not at all! Given an investment of time and energy into C#, there is no limit to the number of platforms you
will be able to develop for. Next, we will cover a few of the most common environments C# developers can
deploy to.

Desktop

Building applications for Windows has always been
a staple for the C# developer. In the beginning, our
applications were written using Windows Forms
(WinForms). WinForms, combined with the powerful
designer tools within Visual Studio, allows a developer
to quickly scaffold the look and feel of an application.
Business logic for control interactions was simply done
through the use of event handlers.

WinForms could also be extended further by the use
of third-party control suites, such as Progress Telerik
WinForms.. These control suites offer a wide variety
of features that are missing from the base controls
provided out of the box. Controls such as data grids,
charts and more could easily take a team of developers
months to build from scratch, and even then, these
controls would not be as feature rich as what you would
get from UI for WinForms.

A side effect of having an easy to use designer
workflow for WinForms is that applications started to
conform to the same look and feel. The term “battleship
gray” was well known throughout the industry because
it reflected how all WinForms applications looked.
Deviating from the standard was difficult to do, even
with the assistance of third-party tools.

With the release of C# 3.0, Microsoft announced
the Windows Presentation Foundation, or (WPF).
This framework rethought the process of building
Windows-centric applications. Instead of a designer-
centric approach, developers could build out their
user interfaces with a new markup language called
XAML.

Applications built with WPF were still using C#
underneath the covers. Yet developers now had the
capability to build more robust interfaces as easily as
they could with HTML.

Those who wanted a design experience similar to
WinForms could use Blend, a designer tool similar
to Photoshop but specialized in generating XAML.
As with WinForms, a developer who didn’t want to
reinvent the wheel could use one of the amazing
third-party control suites available, such as UI for
WPF.

https://www.progress.com/
http://www.telerik.com/products/winforms.aspx
https://msdn.microsoft.com/en-us/library/aa663364.aspx
https://www.microsoft.com/expression/eng/

Progress.com 8

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The release of Windows 10 opened up a new world
of opportunities for Windows developers. Windows
is not just a desktop operating system anymore. It
can run on desktops, but also on Windows Mobile
devices, Xbox One and Hololens.

The introduction of the Universal Windows Platform
(UWP) created an environment where a developer
could build a single application that could run
natively on Windows 10, but also cross deploy to
Windows 10 Mobile and Xbox One with minor
adjustments. Underneath the veneer, there is a
powerful subsystem accessible through C#, C++,
Visual Basic and JavaScript. Existing skill sets with
WPF and XAML easily translate.

Web

Next, let us turn our attention to the Web Stack,
namely ASP.NET. Over the past several years, there
have been three revolutions in the ASP.NET stack.

In the early days of .NET and WinForms, the Internet
was still in its infancy. The concept of building a line
of business application on the web was relatively
new, and the tools were not designed to handle
applications of this scale.

How does a developer-focused company like
Microsoft take millions of developers with knowledge
of WinForms and similar design patterns, and
convert them to being web developers? The answer

lies in the birth and initial release of ASP.NET
WebForms.

Any developer who had experience with WinForms
could quickly translate those skills to the web. After
all, similar to WinForms, a WebForms application
started in a designer and supported application
control through the use of event handlers.

At its core was, once more, C#.

The web has matured greatly over several years
since the inception of WebForms. In 2007, ASP.
NET dropped the initial version of ASP.NET MVC,
an implementation of the Model View Controller
pattern built on top of the ASP.NET framework.
Developers wanting a purer environment to build
web applications could use ASP.NET MVC to build
applications that didn’t have the overhead of ASP.
NET WebForms.

There was one fundamental flaw with building
ASP.NET applications—your deployment strategy
focused solely around using Internet Information
Services (IIS) on a Windows Server. Windows-based
hosting was often more expensive to set up and
maintain versus Linux or similar operating systems.
The ASP.NET ecosystem was primarily for the
enterprise, who could afford the licensing fees, or
for low traffic sites that could run efficiently within
shared or collocated environments.

In late 2015, ASP.NET went through another
renaissance by introducing ASP.NET Core (and the
.NET Core framework).

Unlike its predecessor’s, ASP.NET Core is an open-
source, open-platform reimagining of how ASP.NET
works. We are still in the early days of this platform,
but imagine being able to build a full web application
on ASP.NET that can be deployed quickly and easily

https://www.progress.com/
https://www.visualstudio.com/vs/universal-windows-platform/
https://www.asp.net/core

Progress.com 9

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

to either Windows, Linux, or even OSX without any
code changes.

Currently, the only languages supported with ASP.
NET Core are C# and F#, whereas previously Visual
Basic was fully supported as well.

Mobile

Okay, C# is a viable language for the desktop and
the web, but it doesn’t do any good for a developer
looking to focus on mobile applications, right?

As discussed above with Universal Windows
Platform applications, you can easily target Windows
10 Mobile with a few code modifications. If we look
at mobile market share for 2016, however, Windows
Phone falls below 3% for the United States; the top
competitors, of course, being iOS and Android, which
consist of the majority of mobile users.

The fallacy in the industry is if you want to develop
iOS applications, you need to learn Objective-C or
Swift. If you want to develop Android applications,
you need to know Java.

In February 2016, Microsoft bought Xamarin, a
framework for building iOS and Android applications
on top of the Mono platform.

The trick to Xamarin is that you can build native
Android, native iOS and even native Windows

applications using the same common codebase
build with C#. No other platform can boast this
type of feature set. Even with cross-platform
mobile solutions such as PhoneGap or WebView,
the experience is a simple shell that applications
are injected into. Xamarin gives developers direct
access to the native look and feel iOS and Android
users expect to see.

Let us recap all of the platforms a C# developer
could find themselves deploying to. First, on the
desktop, you could write or maintain applications
built with Windows Forms, Windows Presentation
Foundation and the new Universal Windows
Platform. Next is the web, where an application
could be built with ASP.NET WebForms or ASP.NET
MVC. Platform conscious developers can now even
take advantage of ASP.NET Core, allowing for work
on not just Windows, but Linux or OSX. Lastly, the
mobile market is obtainable through using Xamarin
to build cross-platform mobile applications that
share a common codebase written in C#.

https://www.progress.com/
http://www.mono-project.com/

Progress.com 10

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Fifteen Years of Innovation
and Features

Up until now, we have talked at great length about the
current state of the C# ecosystem. There are easily 15
years of platforms and systems built on top of C#. This is
not the peak of the language however. Rather, all of this
innovation is possible because C# continues to mature
and grow as a language.

What are some major features that have been exposed
through 15 years of innovation? If you are already an
existing C# developer, these are probably features you
take for granted.

Something as simple as Generics, Partial Types and
Nullable types didn’t exist until version 2.0 of the C#
specification. Version 3.0 of C# introduced Extension
Methods, Expression trees, Lambda expression
and more. These features allowed LINQ (Language
Integrated Query) to be possible, a feature that ultimately
changed how C# developers worked with data.

C# 4.0 radically changed how developers used types,
by introducing dynamic types to a statically typed
language. Asynchronous methods were added in C# 5.0,
which provided developers a process for building more
performant applications by allowing long running tasks
to execute asynchronously.

Lastly, in C# 6.0, we saw the Roslyn compiler (or
Compiler as a service), which provides the C# compiler
to developers to use at run-time. It also provides code
analysis tools and powers many of the developer
features built into Visual Studio.

This list is by no means exhaustive, but it provides a
broad landscape of how C# has matured over the years.
If you are new to C#, take some time to review the entire
list of features.

https://www.progress.com/
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#Features_added_in_versions

Progress.com 11

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

What is New in C# 7.0?
Next, we will shift gears and talk about what is coming down the line. We will examine the question, “What is
new in C# 7.0?”

It is important to note that the following examples and concepts are still in preview. Their context and syntax
is still being actively developed, and there is no guarantee the features will not be changed or removed in the
future.

Out Variables

Using the out keyword within C# is nothing new. If you declare a variable within a method called with out,
you are instructing the compile that you are expecting the method to set the values of those at runtime.

public void TestMethod()

{

 string fullName;

 GetPersonName(“Kevin”, “Griffin”, out fullName);

}

Commonly, the problem is that you have to declare the variable before the method call using out. In C# 7.0,
there is the concept of out variables, which will save you a couple keystrokes by allowing you to declare the
variable inline.

The above example can be quickly refactored:�

public void TestMethod()

{

 GetPersonName(“Kevin”, “Griffin”, **out string fullName**);

}

In parallel, if you do not know the type of the parameter, you can substitute the type of the parameter with
var.

https://www.progress.com/

Progress.com 12

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Pattern Matching

In C# 7.0, there is a heavy emphasis on pattern matching. Simply described, C# 7.0 will have the ability to see
if data follows in a certain pattern or shape. As you will see in the next section, C# 7.0 will also have the ability
to automatically extract a value if a pattern matches successfully.

The next example shows pattern matching in action with a Switch statement:

switch(person)

{

 case CEO ceo:

 CallCeo(ceo);

 break;

 case Manager salesManager when (salesManager.Department == “Sales”):

 CallSalesManager(salesManager);

 break;

 case Manager other

 CallManager(other);

 break;

 default:

 WriteLine(“Standard employee”);

 break;

 case null:

 throw new ArgumentNullException(nameof(person));

}

Walk through the Switch statement case-by-case. A “person” object is being fed into your Switch statement,
and we want to evaluate the switch statement differently depending on the type and shape of the data within
person.

In the first case, if the object matches the same pattern as a CEO object, we will match and call the
appropriate case handler. Next, we have two types of statements that test whether the object is a manager. In
contrast to that, in the case of a manager being from the “sales” department, our goal is to perform a different
function than we would with a manager from any other department. The case statement can test for this by
using the when keyword to perform a test against a generated salesManager object.

There are two fallback scenarios. Most commonly, the default case is that we passed an object that doesn’t
match any of the previous patterns. Finally, there is also a null case that will ensure the object passed in has a
value, and throw a null reference exception when a null is passed instead.

https://www.progress.com/

Progress.com 13

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Is-Expressions

Building slightly on the above explanation of out variables, we can use pattern variables to create variables on
demand within a block of code.

public void LoadPerson(object age)

{

 if (age is int ageInt || (age is string ageString &&

 int.TryParse(ageAsString, out ageInt)))

 {

 // ageInt contains a value.

 }

}

Looking at the code example, we have a case where the “age” of a person might come into our application as
either a string or an integer. The If statement is an integer, immediately dropped into the if statement body.
However, if “age” is a string, we will need to perform a conversion using the int.TryParse method.

Previously, the biggest issue with TryParse has been the need to define the variable outside of the TryParse
method call. In C# 7.0, this is no longer the case. You can create the variable on demand if the TryParse
method returns True.

Tuples

In C# 3.0, the Tuple<> reference type was added. What is a Tuple? Simply put, a Tuple is a collection of values.

Imagine our above example for loading a person’s information. There are several ways we can return data
from a method:

public Person LoadPerson(){}

public Tuple<string, string> LoadPerson(){}

The first example returns a fully qualified type. Depending on your use case, this is perfectly acceptable.
However, what if the type Person was throwaway? You are going to retrieve the data, use it and throw it
away. Creating the Person type to simply support a single method is rather cumbersome.

https://www.progress.com/

Progress.com 14

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The second example uses the Tuple<> generic type to retrieve the same information. What does a call to
LoadPerson look like?

public void Foo()

{

 var person = LoadPerson();

 var fullName = $”{person.Item1} {person.Item2}”;

}

For a simple, two-value Tuple, we are starting to veer off the road of readability. What is Item1 or Item2
supposed to reflect? Is it first name and last name, respectfully? Could it be name and address? City or state?
There isn’t much of a way to know because Item1 and Item2 are as explanatory as “a” or “b”.

With C# 7.0, we are going to have access to real Tuples in a way that reflects closer to functional languages
such as F#. Our LoadPerson() method signature would refactor as:

public (string firstName, string lastName) LoadPerson(){};

Notice the new syntax for the return type. The Tuple return type acts similar to the pattern you use for
declaring function parameters. Lastly, if you want to create a Tuple inline, that can be done by using the new
keyword.

return new (string firstName, string lastName) { firstName = “Kevin”, lastName = “Griffin”};

Digit Separators

File this feature under “crazy useful.” How many times have you created a numeric literal and had to count the
number of digits to ensure you entered the correct number?

For example:

long Gigabyte = 1048576;

Seemingly harmless number, unless you forget a digit. Normally, if someone wrote this number longhand, it

https://www.progress.com/

Progress.com 15

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

would be represented as 1,048,576. The commas help dictate the position of the digits.

New “digit separators” in C# 7.0 allow you to do the same thing, except, instead of using a comma, you can
use an underscore.

long Gigabyte = 1_048_576;

The compiler will ignore the underscores at build time.

Throw Exceptions

Writing defensive code often means throwing a lot of exceptions. In C# 7.0, there are new adjustments to
where you can throw an exception.

For example, take this existing method:

public string GetName(Person person)

{

 if (person.Name == null)

 throw new Exception(“Name not found”);

 return person.Name;

}

With the new changes to where we can throw exceptions, that method can be quickly refactored to:

public string GetName(Person person)

{

 return person.Name ?? throw new Exception(“Name not found.”);

}

Non-Nullable Reference Types

One of the most common exceptions thrown in .NET applications is the Null Reference exception. What is the
problem? Reference types in C# are nullable by default. This precondition causes developers to bulletproof

https://www.progress.com/

Progress.com 16

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

their code constantly to ensure they are not attempting to access a variable that could potentially be null at
runtime.

For value types, such as int or DateTime, it is not possible for the value to be null unless you create it as a
Nullable type.

int? intCouldBeNull;

DateTime? nullableDateTime;

What if the designers of C# simply changed the defaults? All reference types were non-nullable by default,
and you explicitly had to set a variable are nullable.

That would break 15 years of C# code already out in the wild.

As an alternative, what if we could explicitly declare that a value type was “non-nullable?” In C# 7.0, the “!”
operator is used to dictate that a variable is non-nullable.

string! nonNullableString;

Person! nonNullablePerson;

By using the “!” operator, we are telling C# that nonNullableString and nonNullablePerson should NEVER be
set to null. In the case of a null value being passed, this should cause a compiler error or warning.

https://www.progress.com/

Progress.com 17

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Stable Foundation, Stable Career
If you are new to the industry or a seasoned
professional, you have a huge decision to make about
the technologies you want to align yourself with. C# has
shown itself over time to be not only a stable platform,
but a language which has matured and grown over
the years to adapt as developer needs have changed.
The latest version, C# 7.0, is currently in preview. It is
boasting a plethora of new features designed to make
code easier to read and write.

StackOverflow, the single most reliable resource for
developers on the Internet, states that C# is one of the
five top tech platforms in the world. If you compare
the top tech category to the survey of languages that
developers love to use, only C# will fall on both lists. Not
even Java, which also holds rank as one of the top techs
in the industry, can say it is loved by developers. To add
icing to the cake, a developer who specializes in C# can,
on average, earn between $85,000 to $95,000 per year.
C# is a triple threat: loved, in demand and high paying.

https://www.progress.com/

Progress.com 18

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

A C# developer is not limited to a life of building
battleship gray Windows applications either. As we
discussed previously, C# allows you to build Windows
applications on the new Universal Windows Platform,
or you can use your skills to support older Windows
Forms based applications. Web developers can now
build fully functional web applications that run on
Windows Server, Linux, or OSX. Xamarin is a framework
for C# developers to build shared codebases which can
be used to build native mobile applications.

World-class applications need world-class
development environments. For over 15 years,
Visual Studio has been the Cadillac of integrated
development environments. With features like
Intellisense, an amazing debugger, and a rich
ecosystem of partner add-ons, Visual Studio
continues to push forward the concept of what an
IDE should be.

Developers who don’t need all the power of Visual
Studio, or want a similar powerhouse experience
on OSX or Linux, should look at using Visual Studio
Code. Open source and cross platform, Code gives
you an amazing coding experience in a smaller
package. If you already have an editor and cannot
be convinced to switch, then the Omnisharp plugin
allows you to take the C# Intellisense experience
with you into whichever editor you use.

Is C# a good decision? The evidence above speaks
wonders about the long-term viability of the
language, the vast ecosystem of developer tools
and the numerous places your knowledge can
be applied. No matter if it you are targeting the
desktop, the web, or mobile, C# is a sure bet for
years to come.

https://www.progress.com/

Progress.com 19

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Brought to You by Progress® Telerik®

Progress Telerik is a comprehensive .NET toolbox offering 600+ UI controls for all .NET technologies,
HTML5, and Xamarin—plus code quality and reporting tools. Out-of-the-box support for numerous business
scenarios ensures lower development cost, increased developer productivity and shorter time to market. A
familiar API, similar to the Microsoft one, thousands of demos with source code and comprehensive technical
documentation make Progress Telerik easy to learn and use.

Progress and Telerik are registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/
or other countries. Any other trademarks contained herein are the property of their respective owners.

© 2016 Progress Software Corporation and/or its subsidiaries or affiliates.
All rights reserved.
Rev 16/10 | 160928-0051

Try Progress Telerik

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for
developing and deploying mission-critical business applications.
Progress empowers enterprises and ISVs to build and deliver
cognitive-first applications, that harness big data to derive
business insights and competitive advantage. Progress offers
leading technologies for easily building powerful user interfaces
across any type of device, a reliable, scalable and secure backend
platform to deploy modern applications, leading data connectivity
to all sources, and award-winning predictive analytics that brings
the power of machine learning to any organization. Over 1700
independent software vendors, 80,000 enterprise customers, and
2 million developers rely on Progress to power their applications.
Learn about Progress at www.progress.com
or +1-800-477-6473.

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw

 twitter.com/progresssw
 youtube.com/progresssw

For regional international office locations and contact
information, please go to
www.progress.com/worldwide	

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

https://www.progress.com/
http://www.telerik.com/devcraft?utm_source=telerik&utm_campaign=devcraft-whitepaper-csharp&utm_medium=pdf

	A Brief History Lesson
	Career Landscape for a C# Developer
	Tools of the Trade
	Platforms
	Fifteen Years of Innovation and Features
	What is New in C# 7.0?

